ﻻ يوجد ملخص باللغة العربية
The well known Sandpile model of self-organized criticality generates avalanches of all length and time scales, without tuning any parameters. In the original models the external drive is randomly selected. Here we investigate a drive which depends on the present state of the system, namely the effect of favoring sites with a certain height in the deposition process. If sites with height three are favored, the system stays in a critical state. Our numerical results indicate the same universality class as the original model with random depositition, although the stationary state is approached very differently. In constrast, when favoring sites with height two, only avalanches which cover the entire system occur. Furthermore, we investigate the distributions of sites with a certain height, as well as the transient processes of the different variants of the external drive.
Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant r
Stationarity of the constituents of the body and of its functionalities is a basic requirement for life, being equivalent to survival in first place. Assuming that the resting state activity of the brain serves essential functionalities, stationarity
The shape of clouds has proven to be essential for classifying them. Our analysis of images from fair weather cumulus clouds reveals that, besides by turbulence they are driven by self-organized criticality (SOC). Our observations yield exponents tha
The concept of percolation is combined with a self-consistent treatment of the interaction between the dynamics on a lattice and the external drive. Such a treatment can provide a mechanism by which the system evolves to criticality without fine tuni
Critical exponents of the infinitely slowly driven Zhang model of self-organized criticality are computed for $d=2,3$ with particular emphasis devoted to the various roughening exponents. Besides confirming recent estimates of some exponents, new qua