ﻻ يوجد ملخص باللغة العربية
We study the collective escape dynamics of a chain of coupled, weakly damped nonlinear oscillators from a metastable state over a barrier when driven by a thermal heat bath in combination with a weak, globally acting periodic perturbation. Optimal parameter choices are identified that lead to a drastic enhancement of escape rates as compared to a pure noise-assisted situation. We elucidate the speed-up of escape in the driven Langevin dynamics by showing that the time-periodic external field in combination with the thermal fluctuations triggers an instability mechanism of the stationary homogeneous lattice state of the system. Perturbations of the latter provided by incoherent thermal fluctuations grow because of a parametric resonance, leading to the formation of spatially localized modes (LMs). Remarkably, the LMs persist in spite of continuously impacting thermal noise. The average escape time assumes a distinct minimum by either tuning the coupling strength and/or the driving frequency. This weak ac-driven assisted escape in turn implies a giant speed of the activation rate of such thermally driven coupled nonlinear oscillator chains.
The physics of activated escape of objects out of a metastable state plays a key role in diverse scientific areas involving chemical kinetics, diffusion and dislocation motion in solids, nucleation, electrical transport, motion of flux lines supercon
Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example, where waves originate from a source exhibiting a back-and-forth movement in radial direction. The periodic motion of the
We study the flux of totally asymmetric simple exclusion processes (TASEPs) on a twin co-axial square tracks. In this biologically motivated model the particles in each track act as mobile bottlenecks against the movement of the particles in the othe
Finding the causes for the nonstatistical vibrational energy relaxation in the planar carbonyl sulfide (OCS) molecule is a longstanding problem in chemical physics: Not only is the relaxation incomplete long past the predicted statistical relaxation
Two distinct transition points have been observed in a problem of lattice percolation studied using a system of pulsating discs. Sites on a regular lattice are occupied by circular discs whose radii vary sinusoidally within $[0,R_0]$ starting from a