ﻻ يوجد ملخص باللغة العربية
We study up to second order the galaxy number over-density that depends on magnification in redshift space on cosmological scales for a concordance model. The result contains all general relativistic effects up to second order which arise from observing on the past light cone, including all redshift and lensing distortions, contributions from velocities, Sachs-Wolfe, integrated SW and time-delay terms. We find several new terms and contributions that could be potentially important for an accurate calculation of the bias on estimates of non-Gaussianity and on precision parameter estimates.
We present a detailed derivation of the observed galaxy number over-density on cosmological scales up to second order in perturbation theory. We include all relativistic effects that arise from observing on the past lightcone. The derivation is in a
We present the galaxy number overdensity up to second order in redshift space on cosmological scales for a concordance model. The result contains all general relativistic effects up to second order that arise from observing on the past light cone, in
Next generation surveys will be capable of determining cosmological parameters beyond percent level. To match this precision, theoretical descriptions should look beyond the linear perturbations to approximate the observables in large scale structure
We discuss the question of gauge choice when analysing relativistic density perturbations at second order. We compare Newtonian and General Relativistic approaches. Some misconceptions in the recent literature are addressed. We show that the comoving
Sunyaev-Zeldovich (SZ) surveys are promising probes of cosmology - in particular for Dark Energy (DE) -, given their ability to find distant clusters and provide estimates for their mass. However, current SZ catalogs contain tens to hundreds of objec