ﻻ يوجد ملخص باللغة العربية
Next generation surveys will be capable of determining cosmological parameters beyond percent level. To match this precision, theoretical descriptions should look beyond the linear perturbations to approximate the observables in large scale structure. A quantity of interest is the Number density of galaxies detected by our instruments. This has been focus of interest recently, and several efforts have been made to explain relativistic effects theoretically, thereby testing the full theory. However, the results at nonlinear level from previous works are in disagreement. We present a new and independent approach to computing the relativistic galaxy number counts to second order in cosmological perturbation theory. We derive analytical expressions for the full second order relativistic observed redshift, for the angular diameter distance and for the volume spanned by a survey. Finally, we compare our results with previous works which compute the general distance-redshift relation, finding that our result is in agreement at linear order.
We present a detailed derivation of the observed galaxy number over-density on cosmological scales up to second order in perturbation theory. We include all relativistic effects that arise from observing on the past lightcone. The derivation is in a
We study up to second order the galaxy number over-density that depends on magnification in redshift space on cosmological scales for a concordance model. The result contains all general relativistic effects up to second order which arise from observ
The galaxy number density is a key quantity to compare theoretical predictions to the observational data from current and future Large Scale Structure surveys. The precision demanded by these Stage IV surveys requires the use of second order cosmolog
We discuss the question of gauge choice when analysing relativistic density perturbations at second order. We compare Newtonian and General Relativistic approaches. Some misconceptions in the recent literature are addressed. We show that the comoving
Sunyaev-Zeldovich (SZ) surveys are promising probes of cosmology - in particular for Dark Energy (DE) -, given their ability to find distant clusters and provide estimates for their mass. However, current SZ catalogs contain tens to hundreds of objec