ﻻ يوجد ملخص باللغة العربية
We present the galaxy number overdensity up to second order in redshift space on cosmological scales for a concordance model. The result contains all general relativistic effects up to second order that arise from observing on the past light cone, including all redshift effects, lensing distortions from convergence and shear, and contributions from velocities, Sachs-Wolfe, integrated SW and time-delay terms. This result will be important for accurate calculation of the bias on estimates of non-Gaussianity and on precision parameter estimates, introduced by nonlinear projection effects.
We present a detailed derivation of the observed galaxy number over-density on cosmological scales up to second order in perturbation theory. We include all relativistic effects that arise from observing on the past lightcone. The derivation is in a
We study up to second order the galaxy number over-density that depends on magnification in redshift space on cosmological scales for a concordance model. The result contains all general relativistic effects up to second order which arise from observ
Next generation surveys will be capable of determining cosmological parameters beyond percent level. To match this precision, theoretical descriptions should look beyond the linear perturbations to approximate the observables in large scale structure
The galaxy number density is a key quantity to compare theoretical predictions to the observational data from current and future Large Scale Structure surveys. The precision demanded by these Stage IV surveys requires the use of second order cosmolog
We derive and test an approximation for the angular power spectrum of galaxy number counts in the flat sky limit. The standard density and redshift space distortion (RSD) terms in the resulting approximation are distinct to the Limber approximation,