ﻻ يوجد ملخص باللغة العربية
Passive monitoring utilizing distributed wireless sniffers is an effective technique to monitor activities in wireless infrastructure networks for fault diagnosis, resource management and critical path analysis. In this paper, we introduce a quality of monitoring (QoM) metric defined by the expected number of active users monitored, and investigate the problem of maximizing QoM by judiciously assigning sniffers to channels based on the knowledge of user activities in a multi-channel wireless network. Two types of capture models are considered. The user-centric model assumes frame-level capturing capability of sniffers such that the activities of different users can be distinguished while the sniffer-centric model only utilizes the binary channel information (active or not) at a sniffer. For the user-centric model, we show that the implied optimization problem is NP-hard, but a constant approximation ratio can be attained via polynomial complexity algorithms. For the sniffer-centric model, we devise stochastic inference schemes to transform the problem into the user-centric domain, where we are able to apply our polynomial approximation algorithms. The effectiveness of our proposed schemes and algorithms is further evaluated using both synthetic data as well as real-world traces from an operational WLAN.
In this paper, we propose a new Quality Link Metric (QLM), ``Inverse Expected Transmission Count (InvETX) in Optimized Link State Routing (OLSR) protocol. Then we compare performance of three existing QLMs which are based on loss probability measurem
The resource constraints and accuracy requirements for Internet of Things (IoT) memory chips need three-dimensional (3D) monolithic integrated circuits, of which the increasing stack layers (currently more than 176) also cause excessive energy consum
Multi-channel wireless networks are increasingly being employed as infrastructure networks, e.g. in metro areas. Nodes in these networks frequently employ directional antennas to improve spatial throughput. In such networks, given a source and destin
We consider a multihop wireless system. There are multiple source-destination pairs. The data from a source may have to pass through multiple nodes. We obtain a channel scheduling policy which can guarantee end-to-end mean delay for the different tra
We study the minimum latency broadcast scheduling (MLBS) problem in Single-Radio Multi-Channel (SR-MC) wireless ad-hoc networks (WANETs), which are modeled by Unit Disk Graphs. Nodes with this capability have their fixed reception channels, but can s