ترغب بنشر مسار تعليمي؟ اضغط هنا

Quality-of-Service in Multihop Wireless Networks: Diffusion Approximation

61   0   0.0 ( 0 )
 نشر من قبل Ashok Krishnan K.S.
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a multihop wireless system. There are multiple source-destination pairs. The data from a source may have to pass through multiple nodes. We obtain a channel scheduling policy which can guarantee end-to-end mean delay for the different traffic streams. We show the stability of the network for this policy by convergence to a fluid limit. It is intractable to obtain the stationary distribution of this network. Thus we also provide a diffusion approximation for this scheme under heavy traffic. We show that the stationary distribution of the scaled process of the network converges to that of the Brownian limit. This theoretically justifies the performance of the system. We provide simulations to verify our claims.



قيم البحث

اقرأ أيضاً

Control of wireless multihop networks, while simultaneously meeting end-to-end mean delay requirements of different flows is a challenging problem. Additionally, distributed computation of control parameters adds to the complexity. Using the notion o f discrete review used in fluid control of networks, a distributed algorithm is proposed for control of multihop wireless networks with interference constraints. The algorithm meets end-to-end mean delay requirements by solving an optimization problem at review instants. The optimization incorporates delay requirements as weights in the function being maximized. The weights are dynamic and vary depending on queue length information. The optimization is done in a distributed manner using an incremental gradient ascent algorithm. The stability of the network under the proposed policy is analytically studied and the policy is shown to be throughput optimal.
Control of multihop Wireless networks in a distributed manner while providing end-to-end delay requirements for different flows, is a challenging problem. Using the notions of Draining Time and Discrete Review from the theory of fluid limits of queue s, an algorithm that meets delay requirements to various flows in a network is constructed. The algorithm involves an optimization which is implemented in a cyclic distributed manner across nodes by using the technique of iterative gradient ascent, with minimal information exchange between nodes. The algorithm uses time varying weights to give priority to flows. The performance of the algorithm is studied in a network with interference modelled by independent sets.
An efficient and fair node scheduling is a big challenge in multihop wireless networks. In this work, we propose a distributed node scheduling algorithm, called Local Voting. The idea comes from the finding that the shortest delivery time or delay is obtained when the load is equalized throughout the network. Simulation results demonstrate that Local Voting achieves better performance in terms of average delay, maximum delay, and fairness compared to several representative scheduling algorithms from the literature. Despite being distributed, Local Voting has a very close performance to a centralized algorithm that is considered to have the optimal performance.
We consider the problem of minimizing age in a multihop wireless network. There are multiple source-destination pairs, transmitting data through multiple wireless channels, over multiple hops. We propose a network control policy which consists of a d istributed scheduling algorithm, utilizing channel state information and queue lengths at each link, in combination with a packet dropping rule. Dropping of older packets locally at queues is seen to reduce the average age of flows, even below what can be achieved by Last Come First Served (LCFS) scheduling. Dropping of older packets also allows us to use the network without congestion, irrespective of the rate at which updates are generated. Furthermore, exploiting system state information substantially improves performance. The proposed scheduling policy obtains average age values close to a theoretical lower bound as well.
Mobile entities with wireless links are able to form a mobile ad-hoc network. Such an infrastructureless network does not have to be administrated. However, self-organizing principles have to be applied to deal with upcoming problems, e.g. informatio n dissemination. These kinds of problems are not easy to tackle, requiring complex algorithms. Moreover, the usefulness of pure ad-hoc networks is arguably limited. Hence, enthusiasm for mobile ad-hoc networks, which could eliminate the need for any fixed infrastructure, has been damped. The goal is to overcome the limitations of pure ad-hoc networks by augmenting them with instant Internet access, e.g. via integration of UMTS respectively GSM links. However, this raises multiple questions at the technical as well as the organizational level. Motivated by characteristics of small-world networks that describe an efficient network even without central or organized design, this paper proposes to combine mobile ad-hoc networks and infrastructured networks to form hybrid wireless networks. One main objective is to investigate how this approach can reduce the costs of a permanent backbone link and providing in the same way the benefits of useful information from Internet connectivity or service providers. For the purpose of bridging between the different types of networks, an adequate middleware service is the focus of our investigation. This paper shows our first steps forward to this middleware by introducing the Injection Communication paradigm as principal concept.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا