ﻻ يوجد ملخص باللغة العربية
We study the minimum latency broadcast scheduling (MLBS) problem in Single-Radio Multi-Channel (SR-MC) wireless ad-hoc networks (WANETs), which are modeled by Unit Disk Graphs. Nodes with this capability have their fixed reception channels, but can switch their transmission channels to communicate with their neighbors. The single-radio and multi-channel model prevents existing algorithms for single-channel networks achieving good performance. First, the common assumption that one transmission reaches all the neighboring nodes does not hold naturally. Second, the multi-channel dimension provides new opportunities to schedule the broadcast transmissions in parallel. We show MLBS problem in SR-MC WANETs is NP-hard, and present a benchmark algorithm: Basic Transmission Scheduling (BTS), which has approximation ratio of 4k + 12. Here k is the number of orthogonal channels in SR-MC WANETs. Then we propose an Enhanced Transmission Scheduling (ETS) algorithm, improving the approximation ratio to k + 23. Simulation results show that ETS achieves better performance over BTS, and the performance of ETS approaches the lower bound.
Network coding is a recently proposed method for transmitting data, which has been shown to have potential to improve wireless network performance. We study network coding for one specific case of multicast, broadcasting, from one source to all nodes
In this paper, the well-known forwarders dilemma is generalized by accounting for the presence of link quality fluctuations; the forwarders dilemma is a four-node interaction model with two source nodes and two destination nodes. It is known to be ve
Broadcast routing has become an important research field for vehicular ad-hoc networks (VANETs) recently. However, the packet delivery rate is generally low in existing VANET broadcast routing protocols. Therefore, the design of an appropriate broadc
We consider optimal resource allocation problems under asynchronous wireless network setting. Without explicit model knowledge, we design an unsupervised learning method based on Aggregation Graph Neural Networks (Agg-GNNs). Depending on the localize
In dynamic wireless ad-hoc networks (DynWANs), autonomous computing devices set up a network for the communication needs of the moment. These networks require the implementation of a medium access control (MAC) layer. We consider MAC protocols for Dy