ترغب بنشر مسار تعليمي؟ اضغط هنا

3D Wireless Channel Modeling for Multi-layer Network on Chip

312   0   0.0 ( 0 )
 نشر من قبل Chao Ren
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The resource constraints and accuracy requirements for Internet of Things (IoT) memory chips need three-dimensional (3D) monolithic integrated circuits, of which the increasing stack layers (currently more than 176) also cause excessive energy consumption and increasing wire length. In this paper, a novel 3D wireless network on chips (3DWiNoCs) model transmitting signal directly to the destination in arbitrary layer is proposed and characterized. However, due to the the reflection and refraction characteristics in each layer, the complex and diverse wireless paths in 3DWiNoC add great difficulty to the channel characterization. To facilitate the modeling in massive layer NoC situation, both boundary-less model boundary-constrained 3DWiNoC model are proposed, of which the channel gain can be obtained by a computational efficient approximate algorithm. These 3DWiNoC models with approximation algorithm can well characterize the 3DWiNoC channel in aspect of complete reflection and refraction characteristics, and avoid massive wired connections, high power consumption of cross-layer communication and high-complexity of 3DWiNoC channel characterization. Numerical results show that: 1) The difference rate between the two models is lower than 0.001% (signal transmit through 20 layers); 2) the channel gain decreases sharply if refract time increases; and 3) the approximate algorithm can achieve an acceptable accuracy (error rate lower than 0.1%).



قيم البحث

اقرأ أيضاً

132 - Huy Nguyen , Gabriel Scalosub , 2013
Passive monitoring utilizing distributed wireless sniffers is an effective technique to monitor activities in wireless infrastructure networks for fault diagnosis, resource management and critical path analysis. In this paper, we introduce a quality of monitoring (QoM) metric defined by the expected number of active users monitored, and investigate the problem of maximizing QoM by judiciously assigning sniffers to channels based on the knowledge of user activities in a multi-channel wireless network. Two types of capture models are considered. The user-centric model assumes frame-level capturing capability of sniffers such that the activities of different users can be distinguished while the sniffer-centric model only utilizes the binary channel information (active or not) at a sniffer. For the user-centric model, we show that the implied optimization problem is NP-hard, but a constant approximation ratio can be attained via polynomial complexity algorithms. For the sniffer-centric model, we devise stochastic inference schemes to transform the problem into the user-centric domain, where we are able to apply our polynomial approximation algorithms. The effectiveness of our proposed schemes and algorithms is further evaluated using both synthetic data as well as real-world traces from an operational WLAN.
109 - Zhiwei Zhao , Wei Dong , Jie Yu 2015
Performance characterization is a fundamental issue in wireless networks for real time routing, wireless network simulation, and etc. There are four basic wireless operations that are required to be modeled, i.e., unicast, anycast, broadcast, and mul ticast. As observed in many recent works, the temporal and spatial distribution of packet receptions can have significant impact on wireless performance involving multiple links (anycast/broadcast/multicast). However, existing performance models and simulations overlook these two wireless behaviors, leading to biased performance estimation and simulation results. In this paper, we first explicitly identify the necessary 3-Dimension information for wireless performance modeling, i.e., packet reception rate (PRR), PRR spatial distribution, and temporal distribution. We then propose a comprehensive modeling approach considering 3-Dimension Wireless information (called 3DW model). Further, we demonstrate the generality and wide applications of 3DW model by two case studies: 3DWbased network simulation and 3DW-based real time routing protocol. Extensive simulation and testbed experiments have been conducted. The results show that 3DW model achieves much more accurate performance estimation for both anycast and broadcast/multicast. 3DW-based simulation can effectively reserve the end-to-end performance metric of the input empirical traces. 3DW-based routing can select more efficient senders, achieving better transmission efficiency.
Deep learning can be used to classify waveform characteristics (e.g., modulation) with accuracy levels that are hardly attainable with traditional techniques. Recent research has demonstrated that one of the most crucial challenges in wireless deep l earning is to counteract the channel action, which may significantly alter the waveform features. The problem is further exacerbated by the fact that deep learning algorithms are hardly re-trainable in real time due to their sheer size. This paper proposes DeepFIR, a framework to counteract the channel action in wireless deep learning algorithms without retraining the underlying deep learning model. The key intuition is that through the application of a carefully-optimized digital finite input response filter (FIR) at the transmitters side, we can apply tiny modifications to the waveform to strengthen its features according to the current channel conditions. We mathematically formulate the Waveform Optimization Problem (WOP) as the problem of finding the optimum FIR to be used on a waveform to improve the classifiers accuracy. We also propose a data-driven methodology to train the FIRs directly with dataset inputs. We extensively evaluate DeepFIR on a experimental testbed of 20 software-defined radios, as well as on two datasets made up by 500 ADS-B devices and by 500 WiFi devices and a 24-class modulation dataset. Experimental results show that our approach (i) increases the accuracy of the radio fingerprinting models by about 35%, 50% and 58%; (ii) decreases an adversarys accuracy by about 54% when trying to imitate other devices fingerprints by using their filters; (iii) achieves 27% improvement over the state of the art on a 100-device dataset; (iv) increases by 2x the accuracy of the modulation dataset.
Multi-channel wireless networks are increasingly being employed as infrastructure networks, e.g. in metro areas. Nodes in these networks frequently employ directional antennas to improve spatial throughput. In such networks, given a source and destin ation, it is of interest to compute an optimal path and channel assignment on every link in the path such that the path bandwidth is the same as that of the link bandwidth and such a path satisfies the constraint that no two consecutive links on the path are assigned the same channel, referred to as Channel Discontinuity Constraint (CDC). CDC-paths are also quite useful for TDMA system, where preferably every consecutive links along a path are assigned different time slots. This paper contains several contributions. We first present an $O(N^{2})$ distributed algorithm for discovering the shortest CDC-path between given source and destination. This improves the running time of the $O(N^{3})$ centralized algorithm of Ahuja et al. for finding the minimum-weight CDC-path. Our second result is a generalized $t$-spanner for CDC-path; For any $theta>0$ we show how to construct a sub-network containing only $O(frac{N}{theta})$ edges, such that that length of shortest CDC-paths between arbitrary sources and destinations increases by only a factor of at most $(1-2sin{tfrac{theta}{2}})^{-2}$. We propose a novel algorithm to compute the spanner in a distributed manner using only $O(nlog{n})$ messages. An important conclusion of this scheme is in the case of directional antennas are used. In this case, it is enough to consider only the two closest nodes in each cone.
Recently, utilizing renewable energy for wireless system has attracted extensive attention. However, due to the instable energy supply and the limited battery capacity, renewable energy cannot guarantee to provide the perpetual operation for wireless sensor networks (WSN). The coexistence of renewable energy and electricity grid is expected as a promising energy supply manner to remain function for a potentially infinite lifetime. In this paper, we propose a new system model suitable for WSN, taking into account multiple energy consumptions due to sensing, transmission and reception, heterogeneous energy supplies from renewable energy, electricity grid and mixed energy, and multidimension stochastic natures due to energy harvesting profile, electricity price and channel condition. A discrete-time stochastic cross-layer optimization problem is formulated to achieve the optimal trade-off between the time-average rate utility and electricity cost subject to the data and energy queuing stability constraints. The Lyapunov drift-plus-penalty with perturbation technique and block coordinate descent method is applied to obtain a fully distributed and low-complexity cross-layer algorithm only requiring knowledge of the instantaneous system state. The explicit trade-off between the optimization objective and queue backlog is theoretically proven. Finally, the extensive simulations verify the theoretic claims.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا