ترغب بنشر مسار تعليمي؟ اضغط هنا

Galactic kinematics with RAVE data: I. The distribution of stars towards the Galactic poles

83   0   0.0 ( 0 )
 نشر من قبل Lionel Veltz Dr
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the distribution of G and K type stars towards the Galactic poles using RAVE and ELODIE radial velocities, 2MASS photometric star counts, and UCAC2 proper motions. The combination of photometric and 3D kinematic data allows us to disentangle and describe the vertical distribution of dwarfs, sub-giants and giants and their kinematics. We identify discontinuities within the kinematics and magnitude counts that separate the thin disk, thick disk and a hotter component. The respective scale heights of the thin disk and thick disk are 225$pm$10 pc and 1048$pm$36 pc. We also constrain the luminosity function and the kinematic distribution function. The existence of a kinematic gap between the thin and thick disks is incompatible with the thick disk having formed from the thin disk by a continuous process, such as scattering of stars by spiral arms or molecular clouds. Other mechanisms of formation of the thick disk such as `created on the spot or smoothly `accreted remain compatible with our findings.



قيم البحث

اقرأ أيضاً

Nearly 400 Tycho-2 stars have been observed in a 720 square degree field in the direction of the North Galactic Pole with the high resolution echelle spectrograph ELODIE. Absolute magnitudes, effective temperatures, gravities and metallicities have b een estimated, as well as distances and 3D velocities. Most of these stars are clump giants and span typical distances from 200pc to 800pc to the galactic mid-plane. This new sample, free of any kinematical and metallicity bias, is used to investigate the vertical distribution of disk stars. The old thin disk and thick disk populations are deconvolved from the velocity-metallicity distribution of the sample and their parameters are determined. The thick disk is found to have a moderate rotational lag of -51+-5 km/s with respect to the Sun with velocity ellipsoid (sigma_U, sigma_V, sigma_W)=(63+-6, 39+-4, 39+-4) km/s, mean metallicity of [Fe/H]=-0.48+-0.05 and a high local normalization of 15+-7%. Combining this NGP sample with a local sample of giant stars from the Hipparcos catalogue, the orientation of the velocity ellipsoid is investigated as a function of distance to the plane and metallicity. We find no vertex deviation for old stars, consistent with an axisymmetric Galaxy. Paper II is devoted to the dynamical analysis of the sample, puting new constraints on the vertical force perpendicular to the galactic plane and on the total mass density in the galactic plane.
Aims: We study the relations between stellar kinematics and chemical abundances of a large sample of RAVE giants in search for selection criteria needed for disentangling different Galactic stellar populations. Methods: We select a sample of 2167 gia nt stars with signal-to-noise per spectral measurements above 75 from the RAVE chemical catalogue and follow the analysis performed by Gratton and colleagues on 150 subdwarf stars spectroscopically observed at high-resolution. We then use a larger sample of 9131 giants (with signal-to-noise above 60) to investigate the chemo-kinematical characteristics of our stars by grouping them into nine subsamples with common eccentricity ($e$) and maximum distance achieved above the Galactic plane ($Z_max$). Results: The RAVE kinematical and chemical data proved to be reliable by reproducing the results by Gratton et al. obtained with high-resolution spectroscopic data. Our analysis, based on the $e$-$Z_max$ plane combined with additional orbital parameters and chemical information, provides an alternative way of identifying different populations of stars. In addition to extracting canonical thick- and thin-disc samples, we find a group of stars in the Galactic plane ($Z_max<1$ kpc and 0.4 $< e < $0.6), which show homogeneous kinematics but differ in their chemical properties. We interpret this as a clear sign that some of these stars have experienced the effects of heating and/or radial migration, which have modified their original orbits. The accretion origin of such stars cannot be excluded.
The presence of massive stars (MSs) in the region close to the Galactic Center (GC) poses several questions about their origin. The harsh environment of the GC favors specific formation scenarios, each of which should imprint characteristic kinematic features on the MSs. We present a 2D kinematic analysis of MSs in a GC region surrounding Sgr A* based on high-precision proper motions obtained with the Hubble Space Telescope. Thanks to a careful data reduction, well-measured bright stars in our proper-motion catalogs have errors better than 0.5 mas yr$^{-1}$. We discuss the absolute motion of the MSs in the field and their motion relative to Sgr A*, the Arches and the Quintuplet. For the majority of the MSs, we rule out any distance further than 3-4 kpc from Sgr A* using only kinematic arguments. If their membership to the GC is confirmed, most of the isolated MSs are likely not associated with either the Arches or Quintuplet clusters or Sgr A*. Only a few MSs have proper motions suggesting they are likely members of the Arches cluster, in agreement with previous spectroscopic results. Line-of-sight radial velocities and distances are required to shed further light on the origin of most of these massive objects. We also present an analysis of other fast-moving objects in the GC region, finding no clear excess of high-velocity escaping stars. We make our astro-photometric catalogs publicly available.
67 - C. Alard 1996
Previous calculations of the rates and optical depths due to microlensing only considered resolved stars. However, if a faint unresolved star lens is close enough to a resolved star, the event will be seen by the microlensing experiments and attribut ed to the bighter star. The blending biases the duration, making the contribution of the unresolved stars very significant for short events. This contribution is confused with lensing by brown dwarfs. The exact rates of these blended events are extremly sensitive to the limiting magnitude achieved in the microlensing search. Appropriate calculations of the optical depth and rates are provided here, and illustrated in the case of the DUO and OGLE experiments. The additional contribution of unresolved stars is very significant and probably explains the high optical depth and rates observed towards the Galactic Bulge. The blended unresolved event can be identified using either the color shift or the light curve shape. However, neither of these two methods is apropriate to identify a large number of blended events towards the Bulge. In some cases of good photometry and small impact parameter, an identification is possible, as for the OGLE 5 event, which clearly appears as a case of lensing of an unresolved star. The recent results obtained by the PLANET collaboration indicate that a high resolution and dense sampling of the light curve is possible, and will probably provide a very interesting possibility to correct the blending bias, as demonstrated for OGLE 5. This possibility, is certainly better than a statistical estimation of the lensing rates, which are always prone to some uncertainty. But, at this time, the contribution of unresolved stars must be included in the analyses of microlensing experiments.
FUSE spectra of 100 extragalactic objects are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the approximate velocity range from -100 to 100 km/s reveals a widespread but highly irregular distribution of thick disk O VI, implying the existence of substantial amounts of hot gas with T ~ 3x10^5 K in the Milky Way halo. Large irregularities in the distribution of the absorbing gas are found to be similar over angular scales extending from less than one to 180 degrees, indicating a considerable amount of small and large scale structure in the gas. The overall distribution of Galactic O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with a scale height of 2.3 kpc, and a 0.25 dex excess of O VI in the northern Galactic polar region. The O VI absorption has a Doppler parameter b = 30 to 99 km/s, with an average value of 60 km/s . Thermal broadening alone cannot explain the large observed profile widths. The average O VI absorption velocities toward high latitude objects range from -46 to 82 km/s, with a sample average of 0 km/s and a standard deviation of 21 km/s. O VI associated with the thick disk moves both toward and away from the plane with roughly equal frequency. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. (abbreviated)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا