ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution and Kinematics of O VI in the Galactic Halo

85   0   0.0 ( 0 )
 نشر من قبل Kenneth R. Sembach
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

FUSE spectra of 100 extragalactic objects are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the approximate velocity range from -100 to 100 km/s reveals a widespread but highly irregular distribution of thick disk O VI, implying the existence of substantial amounts of hot gas with T ~ 3x10^5 K in the Milky Way halo. Large irregularities in the distribution of the absorbing gas are found to be similar over angular scales extending from less than one to 180 degrees, indicating a considerable amount of small and large scale structure in the gas. The overall distribution of Galactic O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with a scale height of 2.3 kpc, and a 0.25 dex excess of O VI in the northern Galactic polar region. The O VI absorption has a Doppler parameter b = 30 to 99 km/s, with an average value of 60 km/s . Thermal broadening alone cannot explain the large observed profile widths. The average O VI absorption velocities toward high latitude objects range from -46 to 82 km/s, with a sample average of 0 km/s and a standard deviation of 21 km/s. O VI associated with the thick disk moves both toward and away from the plane with roughly equal frequency. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. (abbreviated)



قيم البحث

اقرأ أيضاً

We explore differences in Galactic halo kinematic properties derived from two commonly employed Galactic potentials: the St$ddot{a}$ckel potential and the default Milky Way-like potential used in the Galpy package (MWPotential2014), making use of sta rs with available metallicities, radial velocities, and proper motions from Sloan Digital Sky Survey Data Release 12. Adopting the St$ddot{a}$ckel potential, we find that the shape of the metallicity distribution function (MDF) and the distribution of orbital rotation abruptly change at $Z_{rm max}$ = 15 kpc and $r_{rm max}$ = 30 kpc (where $Z_{rm max}$ and $r_{rm max}$ are the maximum distances reached by a stellar orbit from the Galactic plane and from the Galactic center, respectively), indicating that the transition from dominance by the inner-halo stellar population to the outer-halo population occurs at those distances. Stars with $Z_{rm max}$ $>$ 15 kpc show an average retrograde motion of $V_{rm phi}$ = $-$60 km s$^{-1}$, while stars with $r_{rm max}$ $>$ 30 kpc exhibit an even larger retrograde value, $V_{rm phi}$ = $-$150 km s$^{-1}$. This retrograde signal is also confirmed using the sample of stars with radial velocities obtained by $Gaia$ Data Release 2, assuming the St$ddot{a}$ckel potential. In comparison, when using the shallower Galpy potential, a noticeable change in the MDF occurs only at $Z_{rm max}$ = 25 kpc, and a much less extreme retrograde motion is derived. This difference arises because stars with highly retrograde motions in the St$ddot{a}$ckel potential are unbound in the shallower Galpy potential, and stars with lower rotation velocities reach larger $Z_{rm max}$ and $r_{rm max}$. The different kinematic characteristics derived from the two potentials suggest that the nature of the adopted Galactic potential can strongly influence interpretation of the properties of the Galactic halo.
We used FUSE to observe ultraviolet emission from diffuse O VI in the hot gas in the Galactic halo. By comparing our result with another, nearby observation blocked by an opaque cloud at a distance of 230 pc, we could subtract off the contribution fr om the Local Bubble, leading to an apparent halo intensity of I_{OVI} = 4680^{+570}_{-660} photons/cm^2/s/sr. A correction for foreground extinction leads to an intrinsic intensity that could be as much as twice this value. Assuming T ~ 3 x 10^5 K, we conclude that the electron density, n_e, is 0.01-0.02 /cm^3, the thermal pressure, p/k, is 7000-10,000 K/cm^3, and that the hot gas is spread over a length of 50-70 pc, implying a small filling factor for O VI-rich gas. ROSAT observations of emission at 1/4 keV in the same direction indicate that the X-rays are weaker by a factor of 1.1 to 4.7, depending on the foreground extinction. Simulated supernova remnants evolving in low density gas have similar O VI to X-ray ratios when the remnant plasma is approaching collisional ioinizational equilibrium and the physical structures are approaching dynamical ``middle age. Alternatively, the plasma can be described by a temperature power-law. Assuming that the material is approximately isobaric and the length scales according to T^(beta) d(ln T), we find beta = 1.5+/-0.6 and an upper temperature cutoff of 10^{6.6(+0.3,-0.2)} K. The radiative cooling rate for the hot gas, including that which is too hot to hold O VI, is 6 x 10^{38} erg/s/kpc^2. This rate implies that ~70% of the energy produced in the disk and halo by SN and pre-SN winds is radiated by the hot gas in the halo.
BINGO (Baryon Acoustic Oscillations from Integrated Neutral Gas Observations.) is a radio telescope designed to survey from 980 MHz to 1260 MHz, observe the neutral Hydrogen (HI) 21-cm line and detect BAO (Baryon Acoustic Oscillation) signal with Int ensity Mapping technique. Here we present our method to generate mock maps of the 21-cm Intensity Mapping signal covering the BINGO frequency range and related test results. (Abridged)
In a step toward understanding the origin of the Galactic Halo, we have reexamined Type II Cepheids (T2C) in the field with new input from the second data release (DR2) of Gaia. For 45 T2C with periods from 1 to 20 days, parallaxes, proper motions, a nd [Fe/H] values are available for 25 stars. Only 5 show [Fe/H] < -1.5, while the remaining stars show thick disk kinematics and [Fe/H] > -0.90. We have compared the T2C stars of the field with their cousins in the globular clusters of the Halo and found that the globular clusters with T2C stars show metallicities and kinematics of a pure Halo population. The globulars may have formed during the overall collapse of the Galaxy while the individual thick disk T2C stars may have been captured from small systems that self-enriched prior to capture. The relationship of these two populations to the micro-galaxies currently recognized as surrounding the Galaxy is unclear.
We present a census of neutral gas in the Milky Way disk and halo down to limiting column densities of $N$(HI)$sim10^{14}$ cm$^{-2}$ using measurements of HI Lyman-series absorption from the Far Ultraviolet Spectroscopic Explorer (FUSE). Our results are drawn from an analysis of 25 AGN sightlines spread evenly across the sky with Galactic latitude |b|$gtrsim 20^{circ}$. By simultaneously fitting multi-component Voigt profiles to 11 Lyman-series absorption transitions covered by FUSE (Ly$beta$-Ly$mu$) plus HST measurements of Ly$alpha$, we derive the kinematics and column densities of a sample of 152 HI absorption components. While saturation prevents accurate measurements of many components with column densities 17$lesssim$log$N$(HI)$lesssim$19, we derive robust measurements at log$N$(HI)$lesssim$17 and log$N$(HI)$gtrsim$19. We derive the first ultraviolet HI column density distribution function (CDDF) of the Milky Way, both globally and for low-velocity (ISM), intermediate-velocity clouds (IVCs), and high-velocity clouds (HVCs). We find that IVCs and HVCs show statistically indistinguishable CDDF slopes, with $beta_{rm IVC}=$ $-1.01_{-0.14}^{+0.15}$ and $beta_{rm HVC}=$ $-1.05_{-0.06}^{+0.07}$. Overall, the CDDF of the Galactic disk and halo appears shallower than that found by comparable extragalactic surveys, suggesting a relative abundance of high-column density gas in the Galactic halo. We derive the sky covering fractions as a function of HI column density, finding an enhancement of IVC gas in the northern hemisphere compared to the south. We also find evidence for an excess of inflowing HI over outflowing HI, with $-$0.88$pm$0.40 M$_odot$ yr$^{-1}$ of HVC inflow versus 0.20$pm$0.10 M$_odot$ yr$^{-1}$ of HVC outflow, confirming an excess of inflowing HVCs seen in UV metal lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا