ترغب بنشر مسار تعليمي؟ اضغط هنا

Vertical distribution of Galactic disk stars I - Kinematics and metallicity

86   0   0.0 ( 0 )
 نشر من قبل Caroline Soubiran
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nearly 400 Tycho-2 stars have been observed in a 720 square degree field in the direction of the North Galactic Pole with the high resolution echelle spectrograph ELODIE. Absolute magnitudes, effective temperatures, gravities and metallicities have been estimated, as well as distances and 3D velocities. Most of these stars are clump giants and span typical distances from 200pc to 800pc to the galactic mid-plane. This new sample, free of any kinematical and metallicity bias, is used to investigate the vertical distribution of disk stars. The old thin disk and thick disk populations are deconvolved from the velocity-metallicity distribution of the sample and their parameters are determined. The thick disk is found to have a moderate rotational lag of -51+-5 km/s with respect to the Sun with velocity ellipsoid (sigma_U, sigma_V, sigma_W)=(63+-6, 39+-4, 39+-4) km/s, mean metallicity of [Fe/H]=-0.48+-0.05 and a high local normalization of 15+-7%. Combining this NGP sample with a local sample of giant stars from the Hipparcos catalogue, the orientation of the velocity ellipsoid is investigated as a function of distance to the plane and metallicity. We find no vertex deviation for old stars, consistent with an axisymmetric Galaxy. Paper II is devoted to the dynamical analysis of the sample, puting new constraints on the vertical force perpendicular to the galactic plane and on the total mass density in the galactic plane.



قيم البحث

اقرأ أيضاً

We report measurements of parallax and proper motion for four 22 GHz water maser sources as part of VERA Outer Rotation Curve project. All sources show Galactic latitudes of $>$ 2$^{circ}$ and Galactocentric distances of $>$ 11 kpc at the Galactic lo ngitude range of 95$^{circ}$ $< l <$ 126$^{circ}$. The sources trace the Galactic warp reaching to 200$sim$400 pc, and indicate the signature of the warp to 600 pc toward the north Galactic pole. The new results along with previous results in the literature show the maximum height of the Galactic warp is increased with Galactocentric distance. Also, we examined velocities perpendicular to the disk for the sample, and found an oscillatory behavior between the vertical velocities and Galactic heights. This behavior suggests the existence of the bending (vertical density) waves, possibly induced by a perturbing satellite (e.g. passage of the Sagittarius dwarf galaxy).
122 - C. Soubiran 2007
We present the parameters of 891 stars, mostly clump giants, including atmospheric parameters, distances, absolute magnitudes, spatial velocities, galactic orbits and ages. One part of this sample consists of local giants, within 100 pc, with atmosph eric parameters either estimated from our spectroscopic observations at high resolution and high signal-to-noise ratio, or retrieved from the literature. The other part of the sample includes 523 distant stars, which we have estimated atmospheric parameters from high resolution but low signal-to-noise Echelle spectra. This new sample is kinematically unbiased, with well-defined boundaries in magnitude and colours. We revisit the basic properties of the Galactic thin disk as traced by clump giants. We find the metallicity distribution to be different from that of dwarfs, with less metal-rich stars. We find evidence for a vertical metallicity gradient of -0.31 dex/kpc and for a transition at 4-5 Gyr in both the metallicity and velocities. The age - metallicity relation (AMR), which exhibits a very low dispersion, increases smoothly from 10 to 4 Gyr, with a steeper increase for younger stars. The age-velocity relation (AVR) is characterized by the saturation of the V and W dispersions at 5 Gyr, and continuous heating in U.
High resolution spectra data of red clump stars towards the NGP have been obtained with the high resolution spectrograph Elodie at OHP for Tycho-2 selected stars. Combined with Hipparcos local analogues, we determine both the gravitational force law perpendicaular to the Galactic plane, and the total surface mass density and thickness of the Galactic disk. The surface mass density of the Galactic disk within 800 pc derived from this analysis is Sigma(|z|<800pc)=76 Msol.pc-2 and, removing the dark halo contribution, the total disk mass density is Sigma0=67 Msol.pc-2 at solar radius. The thickness of the total disk mass distribution is dynamicaly measured for the first time and is found to be 390pc in relative agreement with the old stellar disk scale height. All dynamical evidences concerning the structure of the disk (its local volume density -i.e. the Oort limit-, its surface density and its thickness) are compatible with our knowledge of the corresponding stellar disk properties.
We analyze the distribution of G and K type stars towards the Galactic poles using RAVE and ELODIE radial velocities, 2MASS photometric star counts, and UCAC2 proper motions. The combination of photometric and 3D kinematic data allows us to disentang le and describe the vertical distribution of dwarfs, sub-giants and giants and their kinematics. We identify discontinuities within the kinematics and magnitude counts that separate the thin disk, thick disk and a hotter component. The respective scale heights of the thin disk and thick disk are 225$pm$10 pc and 1048$pm$36 pc. We also constrain the luminosity function and the kinematic distribution function. The existence of a kinematic gap between the thin and thick disks is incompatible with the thick disk having formed from the thin disk by a continuous process, such as scattering of stars by spiral arms or molecular clouds. Other mechanisms of formation of the thick disk such as `created on the spot or smoothly `accreted remain compatible with our findings.
136 - K. Genovali , G. Bono (1 2013
We present homogeneous and accurate iron abundances for almost four dozen (47) of Galactic Cepheids using high-spectral resolution (R$sim$40,000) high signal-to-noise ratio (S/N $ge$ 100) optical spectra collected with UVES at VLT. A significant frac tion of the sample (32) is located in the inner disk (RG $le$ 6.9 kpc) and for half of them we provide new iron abundances. Current findings indicate a steady increase in iron abundance when approaching the innermost regions of the thin disk. The metallicity is super-solar and ranges from 0.2 dex for RG $sim$ 6.5 kpc to 0.4 dex for RG $sim$ 5.5 kpc. Moreover, we do not find evidence of correlation between iron abundance and distance from the Galactic plane. We collected similar data available in the literature and ended up with a sample of 420 Cepheids. Current data suggest that the mean metallicity and the metallicity dispersion in the four quadrants of the Galactic disk attain similar values. The first-second quadrants show a more extended metal-poor tail, while the third-fourth quadrants show a more extended metal-rich tail, but the bulk of the sample is at solar iron abundance. Finally, we found a significant difference between the iron abundance of Cepheids located close to the edge of the inner disk ([Fe/H]$sim$0.4) and young stars located either along the Galactic bar or in the nuclear bulge ([Fe/H]$sim$0). Thus suggesting that the above regions have had different chemical enrichment histories. The same outcome applies to the metallicity gradient of the Galactic bulge, since mounting empirical evidence indicates that the mean metallicity increases when moving from the outer to the inner bulge regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا