ترغب بنشر مسار تعليمي؟ اضغط هنا

The relation between chemical abundances and kinematics of the Galactic disc with RAVE

121   0   0.0 ( 0 )
 نشر من قبل Corrado Boeche
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: We study the relations between stellar kinematics and chemical abundances of a large sample of RAVE giants in search for selection criteria needed for disentangling different Galactic stellar populations. Methods: We select a sample of 2167 giant stars with signal-to-noise per spectral measurements above 75 from the RAVE chemical catalogue and follow the analysis performed by Gratton and colleagues on 150 subdwarf stars spectroscopically observed at high-resolution. We then use a larger sample of 9131 giants (with signal-to-noise above 60) to investigate the chemo-kinematical characteristics of our stars by grouping them into nine subsamples with common eccentricity ($e$) and maximum distance achieved above the Galactic plane ($Z_max$). Results: The RAVE kinematical and chemical data proved to be reliable by reproducing the results by Gratton et al. obtained with high-resolution spectroscopic data. Our analysis, based on the $e$-$Z_max$ plane combined with additional orbital parameters and chemical information, provides an alternative way of identifying different populations of stars. In addition to extracting canonical thick- and thin-disc samples, we find a group of stars in the Galactic plane ($Z_max<1$ kpc and 0.4 $< e < $0.6), which show homogeneous kinematics but differ in their chemical properties. We interpret this as a clear sign that some of these stars have experienced the effects of heating and/or radial migration, which have modified their original orbits. The accretion origin of such stars cannot be excluded.



قيم البحث

اقرأ أيضاً

We have obtained high-resolution, high signal-to-noise spectra for 899 F and G dwarf stars in the Solar neighbourhood. The stars were selected on the basis of their kinematic properties to trace the thin and thick discs, the Hercules stream, and the metal-rich stellar halo. A significant number of stars with kinematic properties in between the thin and thick discs were also observed in order to in greater detail investigate the dichotomy of the Galactic disc. All stars have been homogeneously analysed, using the exact same methods, atomic data, model atmospheres, etc., and also truly differentially to the Sun. Hence, the sample is likely to be free from internal errors, allowing us to, in a multi-dimensional space consisting of detailed elemental abundances, stellar ages, and the full three-dimensional space velocities, reveal very small differences between the stellar populations.
We explore the connections between stellar age, chemistry, and kinematics across a Galactocentric distance of $7.5 < R,(mathrm{kpc}) < 9.0$, using a sample of $sim 12,000$ intermediate-mass (FGK) turnoff stars observed with the RAdial Velocity Experi ment (RAVE) survey. The kinematics of this sample are determined using radial velocity measurements from RAVE, and parallax and proper motion measurements from the Tycho-Gaia Astrometric Solution (TGAS). In addition, ages for RAVE stars are determined using a Bayesian method, taking TGAS parallaxes as a prior. We divide our sample into young ($0 < tau < 3$ Gyr) and old ($8 < tau < 13$ Gyr) populations, and then consider different metallicity bins for each of these age groups. We find significant differences in kinematic trends of young and old, metal-poor and metal-rich, stellar populations. In particular, we find a strong metallicity dependence in the mean Galactocentric radial velocity as a function of radius ($partial {V_{rm R}}/partial R$) for young stars, with metal-rich stars having a much steeper gradient than metal-poor stars. For $partial {V_{phi}}/partial R$, young, metal-rich stars significantly lag the LSR with a slightly positive gradient, while metal-poor stars show a negative gradient above the LSR. We interpret these findings as correlations between metallicity and the relative contributions of the non-axisymmetries in the Galactic gravitational potential (the spiral arms and the bar) to perturb stellar orbits.
RAVE is a spectroscopic survey of the Milky Way which collected more than 500,000 stellar spectra of nearby stars in the Galaxy. The RAVE consortium analysed these spectra to obtain radial velocities, stellar parameters and chemical abundances. These data, together with spatial and kinematic information like positions, proper motions, and distance estimations, make the RAVE database a rich source for galactic archaeology. I present recent investigations on the chemo-kinematic relations and chemical gradients in the Milky Way disk by using RAVE data and compare our results with the Besancon models. I also present the code SPACE, an evolution of the RAVE chemical pipeline, which integrates the measurements of stellar parameters and chemical abundances in one single process.
We analyzed series of spectra obtained for twelve stable RRc stars observed with the echelle spectro- graph of the du Pont telescope at Las Campanas Observatory and we analyzed the spectra of RRc Blazhko stars discussed by Govea et al. (2014). We der ived model atmosphere parameters, [Fe/H] metallicities, and [X/Fe] abundance ratios for 12 species of 9 elements. We co-added all spectra ob- tained during the pulsation cycles to increase S/N and demonstrate that these spectra give results superior to those obtained by co-addition in small phase intervals. The RRc abundances are in good agreement with those derived for the RRab stars of Chadid et al. (2017). We used radial velocity measurements of metal lines and H{alpha} to construct variations of velocity with phase, and center-of-mass velocities. We used these to construct radial-velocity templates for use in low-medium resolution radial velocity surveys of RRc stars. Additionally, we calculated primary accelerations, radius variations, metal and H{alpha} velocity amplitudes, which we display as regressions against primary acceleration. We employ these results to compare the atmosphere structures of metal-poor RRc stars with their RRab counterparts. Finally, we use the radial velocity data for our Blazhko stars and the Blazhko periods of Szczygie l & Fabrycky (2007) to falsify the Blazhko oblique rotator hypothesis.
We examine the influence of the environment on the chemical abundances of late-type galaxies with masses of 10^9.1 M_sun - 10^11 M_sun using data from the Sloan Digital Sky Survey(SDSS). We find that the environmental influence on galactic chemical a bundances is strongest for galaxies with masses of 10^9.1 M_sun to 10^9.6 Msun. The galaxies in the densest environments may exceed the average oxygen abundances by about 0.05 dex (the median value of the overabundances for 101 galaxies in the densest environments) and show higher abundances in nitrogen by about 0.1. The abundance excess decreases with increasing galaxy mass and with decreasing environmental density. Since only a small fraction of late-type galaxies is located in high-density environments these galaxies do not have a significant influence on the general X/H - M relation. The metallicity - mass relations for isolated galaxies and for galaxies with neighbors are very similar. The mean shift of non-isolated galaxies around the metallicity - mass relation traced by the isolated galaxies is less than 0.01 dex for oxygen and less than 0.02 dex for nitrogen. The scatter in the galactic chemical abundances is large for any number of neighbor galaxies (at any environmental density), i.e., galaxies with both enhanced and reduced abundances can be found at any environmental density. This suggests that environmental effects do not play a key role in evolution of late-type galaxies as was also concluded in some of the previous studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا