ترغب بنشر مسار تعليمي؟ اضغط هنا

مراقبة وادارة الشبكات باستخدام نظام zabbix

901   0   16   5.0 ( 1 )
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة العربية
 تمت اﻹضافة من قبل Yazzan Sulaiman




اسأل ChatGPT حول البحث

مراقبة و ادارة الشبكات الحاسوبية باستخدام نظام zabbix حيث تتم الادارة و المراقبة من خلال triggers تطبق على كامل اجهزة الشبكة



المراجع المستخدمة
ﻻ يوجد مراجع
قيم البحث

اقرأ أيضاً

أتت فكرة المشروع من الأهمية المتزايدة للنظم المفتوحة المصدر في أيامنا هذه لاسيما الإمكانات الواسعة التي تتيحها هذه النظم في مجال إدارة الشبكات, حيث يهدف مشروعنا إلى إظهار مزايا نظام Ubuntu وذلك من خلال عرض وإعداد مجموعة من الخدمات التي يقدها في مجال إدارة الشبكات, وبالتالي إظهار الفائدة العلمية والعملية منها, حيث نرى الجانب العلمي من خلال شرح ماتقوم به كل خدمة وماهي البروتوكولات والآليات التي تبنى عليها الخدمة, والتي أيضاً تظهر بشكل واضح من خلال الجانب العملي لكل خدمة لمافيه من عرض شامل للفائدة التي يمكن الحصول عليها.
نواجه في حياتنا اليومية مشكلة الاختناقات المرورية و ما يترتب على ذلك من ضياع في الوقت و الطاقات، حيث تعمل إشارات المرور وفقاً لأنظمة التحكم التقليدي لعقدة مرورية بأزمنة ثابتة و تتابع ثابت. يقترح البحث خوارزمية جديدة للتحكم المبرمج بإشارات المرور، حيث تعمل بأزمنة متغيرة و تتابع متغير حسب حجم الكثافة المرورية. يتم تحصيل بيانات الحركة المرورية (عدد السيارات – الكثافة - التدفق) باستخدام الحساسات الحلقية (Loop Detectors) الموزعة عند كل إشارة، تُنقل هذه البيانات إلى المتحكم المنطقي القابل للبرمجة PLC الذي يقوم بمعالجتها و إصدار الأوامر اللازمة، و يتصل المتحكم بدوره مع نظام التحكم الإشرافي SCADA الذي يؤمن إمكانية مراقبة سير العمل للعقد المرورية، إضافة إلى إمكانية التحكم الأوتوماتيكي و التحكم اليدوي بالإشارات. يقوم النظام المقترح بالربط بين عقدتين عن طريق تطبيق خاصية الموجة الخضراء (Green Wave) بالاعتماد على السرعة الفعلية للسيارات، و إعطاء أولوية المرور لسيارات الطوارئ التي يتم الكشف عنها باستخدام الحساس الحلقي و مقاطعة عمل البرنامج بشكل فوري لفتح الإشارة المطلوبة. تم اختبار نظام التحكم و المراقبة المقترح من خلال أخذ بيانات عقدة مرورية تعمل في نظام التحكم التقليدي و مقارنتها بالنتائج التي يعطيها البرنامج، و قد أظهرت النتائج أنه تم تقليل أزمنة فتح الإشارات، و زمن الدورة الكلية، و زمن الانتظار غير المرغوب به على كل إشارة بشكل كبير، و بالتالي تم تخفيض حجم الاختناقات المرورية عند كل عقدة.
يقدم هذا البحث منظومة للتعرف على مسميات المخططات الزمنية، حيث يتم استخلاص المسميات من المخططات، التي هي عبارة عن صورة باستخدام التقسيم المكاني من أجل اقتطاع صور المسميات فقط. تُوحد أحجام صور المسميات باستخدام خوارزمية المتوسط لسببين؛ الأول تشكيل قاعد ة البيانات التدريبية للشبكات العصبونية المستخدمة، و ثانياً من أجل اجراء عملية التعرف. تم اعتماد الشبكات العصبونية للتعرف بآليتين مختلفتين: آلية التصنيف classification باستخدام شبكة Perceptron و آلية التمييز باستخدام شبكة الانتشار العكسي، حيث تم بناء شبكة Perceptron دخلها صورة المسمى فتُعطي في خرجها الدليل التصنيفي للمسمى، ليتم معرفته بالاعتماد على جدول مسميات مخزن مسبقاً، و شبكة انتشار عكسي دخلها صورة المسمى و خرجها الترميز الحاسوبي للمسمى، كما تم تصميم شبكة الانتشار العكسي بحيث يمكن لها التعرف على كافة صور مسميات أحرف الأبجدية الانكليزية المستخدمة في المخططات الزمنية، أظهرت نتائج البحث فعالية المنظومة المصممة للتعرف على مسميات المخططات الزمنية من صورها، و ذلك للآليتين التصنيفية و التمييزية، بعد تطبيق النظام على ثلاث مخططات زمنية.
في السنوات الأخيرة نمت مشكلة تصنيف الكائنات في الصّور نتيجة لمتطلبات القطاع الصناعي.على الرّغم من تعدد التقنيات المستخدمة للمساعدة في عملية التصنيف SIFT Scale Invariant Feature Transforms، ORB Oriented Fast And Rotated Brief , SURF Speed Up Robust Features، إضافة لشبكات التعلم العميق Deep Learning Neural Network DNN والشبكات العصبونية الالتفافية Convolutional Neural Network CNN، فإن الأنظمة المقترحة لمعالجة هذه المشكلة تفتقر للحل الشّامل للصعوبات المتمثلة بوقت التّدريب الطّويل والذاكرة العائمة أثناء عملية التدريب، وانخفاض معدّل التصنيف. تعتبر الشبكات العصبونية الالتفافيةConvolutional Neural Networks (CNNs) من أكثر الخوارزميات استخداما لهذه المهمة، فقد كانت نموذجا حسابيا لتحليل البيانات الموجودة في الصور. تم اقتراح نموذج شبكة التفافية عميقة جديد لحل المشاكل المذكورة أعلاه. يهدف البحث إلى إظهار أداء نظام التّعرف باستخدام شبكاتCNNs على الذّاكرة المتاحة وزمن التدريب وذلك من خلال منهجة متغيرات مناسبة للشبكة العصبونية الالتفافية. قاعدة البيانات المستخدمة في هذا البحث هي CIFAR10 المكونة من60000 صورة ملونة تنتسب لعشرة أصناف، حيث أن كل 6000 صورة تكون لصنف من هذه الأصناف. يوجد 50000 صورة للتدريب و 10000 صورة للاختبار. حقق النموذج لدى اختباره على عينة من الصور المنتقاة من قاعدة البيانات CIFAR10 معدل تصنيف 98.87%.
تستخدم الشبكة العصبية الصنعية طريقة تعلم استقرائي، و تتطلب بشكل عام أمثِلة لبيانات التدريب، بينما تستخدم الخوارزمية الجينية تعلم اقتطاعي، و تتطلب تابع هدف. لقد تمّ تنظيم التعاون بين هاتين التقانتين في دراستنا هذه بغرض تعزيز أداء كل تقانة من خلال بن اء نظام هجين منهما، عن طريق كتابة برمجيّة عامّة باستخدام برنامج MATLAB بغرض الاختيار الفعّال لمتحولات الدخل لعمليات التنبؤ، و أمثلة أوزان شبكة البيانات قيد الدراسة، و من ثمّ تطبيق هذه البرنامج على بيانات يوميّة، تمّ جمعها من حوض نهر الكبير الجنوبي هي (الهطول، التبخر، الحرارة، الرطوبة النسبية و الجريان النهري بتأخر زمني مقداره يوم واحد) بغرض التنبؤ بالجريان النهري.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا