ترغب بنشر مسار تعليمي؟ اضغط هنا

GMH: نموذج منطق متعدد القفز العام لإنجاز KG

GMH: A General Multi-hop Reasoning Model for KG Completion

360   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

الرسوم البيانية المعرفة ضرورية للعديد من تطبيقات معالجة اللغة الطبيعية المصب، ولكنها غير مكتملة عادة مع العديد من الحقائق المفقودة. ينتج عن هذا الجهود البحثية في مهمة التفكير المتعدد القفزات، والتي يمكن صياغة كعملية بحث ونماذج حالية تؤدي عادة منطق بعيد المنال. ومع ذلك، فإن السبب البعيد الطويل أمر حيوي أيضا بالقدرة على توصيل الكيانات غير المرتبطة بسطحية. بأفضل من علمنا، يفتقر إلى وجود إطار عام يقترب من التفكير المتعدد القفز في سيناريوهات التفكير المسؤولة لفترة طويلة مختلطة. نقول أن هناك مشكلتان رئيسيتان لنموذج التفكير المتعدد القفز العام: ط) أين تذهب، والثاني) عند التوقف. لذلك، نقترح نموذج عام يحدد المشكلات ذات ثلاث وحدات: 1) وحدة المعرفة المحلية المحلية لتقدير المسارات المحتملة، 2) وحدة التسرب الإجراءات المختلفة لاستكشاف مجموعة متنوعة من المسارات، و 3) التوقف التكيفي وحدة البحث لتجنب البحث عنها. توضح النتائج الشاملة على ثلاث مجموعات بيانات تفوق نموذجنا مع تحسينات كبيرة ضد خطوط الأساس في سيناريوهات التفكير المسافة القصيرة والطويلة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تم استخدام شبكة الرسم العصبي الرسمية مؤخرا كأداة واعدة في مهمة الإجابة على السؤال المتعدد القفزات. ومع ذلك، فإن التحديثات غير الضرورية والإنشاءات الحافة البسيطة تمنع استخراج سبان إجابة دقيقة بطريقة أكثر مباشرة وتفسيرها. في هذه الورقة، نقترح نموذجا جد يدا من الرسم البياني للسباق الأول (BFR-Graph)، والذي يقدم رسالة جديدة تمرير طريقة تتوافق بشكل أفضل مع عملية التفكير. في Bfr-Graph، يجب أن تبدأ رسالة المنطق من العقدة والسؤال إلى الجمل التالية عقدة هوب من القفزة حتى يتم تمرير جميع الحواف، والتي يمكن أن تمنع كل عقدة بشكل فعال من التعويض الزائد أو تحديث عدة مرات غير ضرورية وبعد لإدخال المزيد من الدلالات، نحدد أيضا الرسم البياني للمنطق كشركة بيانية مرجحة مع النظر في عدد كيانات الحدوث والمسافة بين الجمل. ثم نقدم طريقة أكثر مباشرة وتفسيرا لتجميع الدرجات من مستويات مختلفة من الحبيبات القائمة على GNN. على المتصدرين Hotpotqa، يحقق BFR-Graph المقترح على التنبؤ الحديث في الإجابة على التنبؤ.
على الرغم من نجاح أنظمة الحوار العصبي في تحقيق أداء عال في مجلس الإدارة، لا يمكنهم تلبية متطلبات المستخدمين في الممارسة العملية، بسبب ضعف مهارات المنطق. السبب الأساسي هو أن معظم نماذج الحوار العصبي تلتقط فقط المعلومات النحوية والدلية، ولكنها تفشل في نموذج الاتساق المنطقي بين محفوظات الحوار والاستجابة الناتجة. في الآونة الأخيرة، تم اقتراح مهمة حوار جديدة متعددة الدوران، لتسهيل أبحاث التفكير الحوار. ومع ذلك، هذه المهمة صعبة، لأن هناك اختلافات طفيفة فقط بين الاستجابة غير المنطقية وتاريخ الحوار. كيفية حل هذا التحدي فعال لا يزال يستحق الاستكشاف. تقترح هذه الورقة نموذج مقارنة غرامة (FCM) لمعالجة هذه المشكلة. مستوحاة من سلوك الإنسان في فهم القراءة، يقترح تركيز آلية المقارنة على الاختلافات الجميلة في تمثيل كل مرشح استجابة. على وجه التحديد، يتم مقارنة كل تمثيل مرشح بالسجل بأكمله للحصول على تمثيل تناسق التاريخ. علاوة على ذلك، تعتبر إشارات الاتساق بين كل مرشح وتاريخ مكبر الصوت في قيادة نموذج يفضل مرشحا متسقا منطقيا مع منطق تاريخ المتكلم. أخيرا، يتم توظيف تمثيلات الاتساق أعلاه لإخراج قائمة التصنيفات من ردود المرشحين لتفويض الحوار متعدد الدوران. النتائج التجريبية على مجموعة بيانات الحوار العامة تظهر أن طريقتنا تحصل على درجات أعلى تصنيف من النماذج الأساسية.
نقوم بتطوير نظام لمهمة استخراج الحقائق الحميرة والتحقق من تحديد مجموعة أولية من الأدلة المحتملة، ثم يتابع الأدلة المفقودة في القفزات اللاحقة من خلال محاولة توليدها، مع وجود وحدة توقعات القفز التالية "التي يتم مطابقة خرجها من عناصر الصفحاتمقال متوقع.ت سعى للحصول على أدلة مع وحدة تنبؤ القفز التالية تستمر في تحسين النتيجة الحميرة لمدة تصل إلى سبع قفزات.يتم تدريب تصنيف العلامات على سلاسل الأدلة المستخرجة غير كاملة غير كاملة، واستخدام تلميحات التي تسهل المقارنة العددية.يحقق النظام .281 النتيجة الحميرة ودقة التسمية .658 على مجموعة التطوير، وينتهي في المرتبة الثانية باستخدام 0.259 درجة حمامة ودقة التسمية .576 على مجموعة الاختبار.
غالبا ما يتطلب الإجابة على السؤال المجمع إيجاد سلسلة من التفكير يتكون من قطع أدلة متعددة.تتضمن الأساليب الحالية نقاط قوة المعرفة والنص غير منظم، بافتراض النص النحاسي نصف منظم.بناء على طرق استرجاع كثيفة، نقترح نهجا جديدا استرجاع متعدد الخطوات (BEAMDR) يشكل بشكل متكرر سلسلة دليل من خلال البحث في شعاع في تمثيلات كثيفة.عند تقييمها على الإجابة على السؤال المتعدد القفز، فإن Beamdr منافسة النظم الحديثة، دون استخدام أي معلومات شبه منظمة.من خلال تكوين الاستعلام في الفضاء الكثيف، يلتقط Beamdr العلاقات الضمنية بين الأدلة في سلسلة المنطق.الرمز متاح في HENREZHAO5852 / BEAMDR.
توضح هذه المقالة البحث عن التحقق من المطالبة المنفذة باستخدام نموذج متعدد القائم على GAN.يتكون النموذج المقترح من ثلاثة أزواج من المولدات والتمييز.المولد والأزواج التمييزية مسؤولة عن توليد البيانات الاصطناعية للمطالبات المدعومة والمطالبة الدوحدة وتسم يات المطالبة.يتم توفير مناقشة نظرية حول النموذج المقترح للتحقق من صحة حالة التوازن للنموذج.يتم تطبيق النموذج المقترح على مجموعة بيانات الحمى، يتم استخدام نموذج لغة مدرب مسبقا لبيانات نص الإدخال.تساعد البيانات التي تم إنشاؤها بشكل شبكي على الحصول على معلومات تعمل على تحسين أداء التصنيف فوق خطوط الأساس الفنية.عشر درجات F1 المعنية بعد تطبيق الأسلوب المقترح في Fever 1.0 ومجموعات بيانات Fever 2.0 هي 0.65 + -0.018 و 0.65 + -0.051.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا