ترغب بنشر مسار تعليمي؟ اضغط هنا

منطق متعدد الخطوات حول النص غير منظم مع استرجاع شعاع كثيف

Multi-Step Reasoning Over Unstructured Text with Beam Dense Retrieval

313   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

غالبا ما يتطلب الإجابة على السؤال المجمع إيجاد سلسلة من التفكير يتكون من قطع أدلة متعددة.تتضمن الأساليب الحالية نقاط قوة المعرفة والنص غير منظم، بافتراض النص النحاسي نصف منظم.بناء على طرق استرجاع كثيفة، نقترح نهجا جديدا استرجاع متعدد الخطوات (BEAMDR) يشكل بشكل متكرر سلسلة دليل من خلال البحث في شعاع في تمثيلات كثيفة.عند تقييمها على الإجابة على السؤال المتعدد القفز، فإن Beamdr منافسة النظم الحديثة، دون استخدام أي معلومات شبه منظمة.من خلال تكوين الاستعلام في الفضاء الكثيف، يلتقط Beamdr العلاقات الضمنية بين الأدلة في سلسلة المنطق.الرمز متاح في HENREZHAO5852 / BEAMDR.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تقدم التطورات الحديثة في QA في الهواء الطلق إلى نماذج قوية تعتمد على استرجاع كثيف، ولكن ركزت فقط على استرداد المقاطع النصية.في هذا العمل، نتعامل مع QA المجال المفتوح على الجداول لأول مرة، وإظهار أنه يمكن تحسين الاسترجاع من خلال المسترد المصمم للتعامل مع سياق الجدول.نقدم إجراءات فعالة مسبقة التدريب لاستردادنا وتحسين جودة الاسترجاع مع السلبيات الصلبة الملغومة.نظرا لأن مجموعات البيانات ذات الصلة مفقودة، فإننا نستخلص مجموعة فرعية من الأسئلة الطبيعية (Kwiatkowski et al.، 2019) في مجموعة بيانات QA.نجد أن المسترد الخاص بنا يحسن نتائج الاسترجاع من 72.0 إلى 81.1 استدعاء @ 10 وتنفذ QA نهاية إلى نهاية من 33.8 إلى 37.7 مباراة دقيقة، عبر المسترد القائم على بيرت.
نحن نبحث في التمثيلات التي تعلمناها عن طريق الرؤية ونماذج اللغة في المهام التي تتطلب التفكير العلائقي.مع التركيز على مشكلة تقييم الحجم النسبي للكائنات في السياقات البصرية مجردة، نحلل منطق واحد وخطوتين.بالنسبة لهذا الأخير، نبني مجموعة بيانات جديدة من مشاهد ثلاثية وتحدد مهمة تتطلب منطق على مستوى الصور الفردية وعبر الصور في مشهد.نحن نبذل تمثيلات النموذج المستفادة باستخدام مصنفات التشخيص.تظهر تجاربنا أن الهندسة المعاد المسبدة مسبقا القائمة على المحولات يمكن أن تؤدي من التفكير العلائقي المستوى الأعلى، وهي قادرة على تعلم تمثيلات المهام والبيانات الجديدة التي تختلف عن ما شوهد في الاحتجاج.
نقدم السيد Tydi، وهي مجموعة بيانات مرجعية متعددة اللغات لاسترجاع أحادي اللغات في أحد عشر لغة متنوعة من الناحية النموذجية، مصممة لتقييم الترتيب مع التمثيلات الكثيفة المستفادة.الهدف من هذا المورد هو أن يحفز البحث في تقنيات استرجاع كثيفة باللغات غير الإ نجليزية، بدافع من الملاحظات الحديثة أن التقنيات الحالية لتعلم التمثيل تؤدي سيئة عند تطبيقها على بيانات خارج التوزيع.كنقطة انطلاق، نحن نقدم خطوط خطوط خطوط البيانات الخاصة بهذه البيانات الجديدة القائمة على التكيف متعدد اللغات من DPR التي نسميها MDPR ".تبين التجارب أنه على الرغم من أن فعالية MDPR أقل بكثير من BM25، إلا أن تمثيلات كثيفة يبدو أنها توفر إشارات ذات أهمية قيمة، وتحسين نتائج BM25 في Sparse - الهجينة الكثيفة.بالإضافة إلى تحليلات نتائجنا، نناقش أيضا التحديات المستقبلية وتقديم جدول أعمال بحث في استرجاع كثيف متعدد اللغات.يمكن تنزيل السيد Tydi في https://github.com/castorini/mr.tydi.
حققت استرجاع النص العصبي الكثيف نتائج واعدة حول السؤال المفتوح للنطاق الرد (QA)، حيث يتم استغلال تمثيلات كامنة للأسئلة والمراجيات للحصول على أقصى قدر من البحث الداخلي في عملية الاسترجاع. ومع ذلك، فإن المستردات الكثيفة الحالية تتطلب تقسيم المستندات إل ى مقاطع قصيرة تحتوي عادة على سياق محلي جزئي ومحازي في بعض الأحيان، وتعتمد بشدة على عملية تقسيم. ونتيجة لذلك، قد تسفر عن تعويضات مخفية غير دقيقة ومضللة، مما تدهور نتيجة الاسترجاع النهائي. في هذا العمل، نقترح استرجاع هرمي هرمي كثيف (DHR)، وهو إطار هرمي يمكنه إنشاء تمثيلات كثيفة دقيقة من الممرات من خلال الاستفادة من كل من الدلالات الكبيرة في الوثيقة والدليل المجهري المحدد لكل مقطع. على وجه التحديد، يحدد المسترد على مستوى المستند أولا المستندات ذات الصلة، من بينها يتم استرداد المقاطع ذات الصلة من خلال المسترد لمستوى المقاطع. سيتم معايرة ترتيب الممرات المستردة من خلال دراسة أهمية مستوى الوثيقة. بالإضافة إلى ذلك، يتم التحقيق في هيكل العنوان الهرمي واستراتيجيات أخذ العينات السلبية (I.E.، في السلبيات في السلبيات) في السلبيات). نطبق DHR إلى مجموعات بيانات QA مفتوحة على نطاق واسع. تتفوق DHR بشكل كبير على استرداد المقطع الكثيف الأصلي، ويساعد نظام ضمان الجودة في نهاية إلى نهاية يتفوق على الأساس القوي على معايير QA متعددة النطاق.
تقوم المشفر المزدح المجرقة بإجراء استرجاع من خلال ترميز المستندات والاستعلامات في متجهات كثيفة منخفضة الأبعاد، حيث سجل كل وثيقة عن طريق المنتج الداخلي مع الاستعلام.نحن نبحث في قدرة هذه الهندسة المعمارية بالنسبة إلى نماذج كيس من الكلمات المتفرقة والشب كات العصبية الاهتمام.باستخدام كل من التحليلات النظرية والتجريبية، نقوم بإنشاء اتصالات بين بعد ترميز، الهامش بين الذهب والوثائق ذات المرتبة الأدنى، وطول الوثيقة، مما يشير إلى حد قيود في سعة الترميزات ذات الطول الثابت لدعم استرجاع الدقة الدقيقة للوثائق الطويلة.بناء على هذه الأفكار، نقترح نموذجا عصبا بسيطا يجمع بين كفاءة الترميز المزدوج مع بعض التعبير عن هياكل التعبير الأكثر تكلفة، واستكشاف الهجينة الكثيفة المتنارية للاستفادة من دقة الاسترجاع المتناقضة.تتفوق هذه النماذج بدائل قوية في استرجاع واسع النطاق.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا