تعلم نماذج اللغة المدربة مسبقا تحيزات ضارة اجتماعيا من كورسا التدريب الخاصة بهم، وقد تكرر هذه التحيزات عند استخدامها للجيل.ندرس التحيزات الجنسانية المرتبطة بطل الرواية في القصص الناتجة النموذجية.قد يتم التعبير عن هذه التحيزات إما صراحة (لا تستطيع المرأة أن تجمع ") أو ضمنيا (على سبيل المثال طابع الذكور غير المرغوب فيه يرشدها إلى مساحة وقوف السيارات).نحن نركز على التحيزات الضمنية واستخدام محرك منطق المنطقي للكشف عنها.على وجه التحديد، نستنتج وتحليل دوافع بطل الرواية، والسمات، والدول الذهنية، والآثار على الآخرين.تتماشى نتائجنا المتعلقة بالتحيزات الضمنية مع العمل المسبق الذي درس تحيزات صريحة، على سبيل المثال إظهار أن تصوير الأحرف الإناث يتركز حول المظهر، بينما تركز أرقام الذكور على الفكر.
Pre-trained language models learn socially harmful biases from their training corpora, and may repeat these biases when used for generation. We study gender biases associated with the protagonist in model-generated stories. Such biases may be expressed either explicitly (women can't park'') or implicitly (e.g. an unsolicited male character guides her into a parking space). We focus on implicit biases, and use a commonsense reasoning engine to uncover them. Specifically, we infer and analyze the protagonist's motivations, attributes, mental states, and implications on others. Our findings regarding implicit biases are in line with prior work that studied explicit biases, for example showing that female characters' portrayal is centered around appearance, while male figures' focus on intellect.
المراجع المستخدمة
https://aclanthology.org/
مع نشر نماذج اللغة بشكل متزايد في العالم الحقيقي، من الضروري معالجة مسألة نزاهة مخرجاتها. غالبا ما تعتمد كلمة تضمين تمثيلات نماذج اللغة هذه ضمنيا ارتباطات غير مرغوب فيها تشكل تحيزا اجتماعيا داخل النموذج. تطرح طبيعة اللغات بين الجنسين مثل الهندية مشكل
يمثل عدم المساواة بين الجنسين خسارة كبيرة في الإمكانات البشرية وإدامة ثقافة العنف، وارتفاع الفجوات في مجال الأجور بين الجنسين، وعدم وجود تمثيل المرأة في المناصب العليا والقيادية. يتم استخدام التطبيقات المدعومة من الذكاء الاصطناعي (AI) بشكل متزايد في
تعد أنظمة معالجة اللغة الطبيعية (NLP) في قلب العديد من أنظمة صنع القرار الآلي الحرجة التي تجعل توصيات حاسمة حول عالمنا في المستقبل.تم دراسة التحيز بين الجنسين في NLP جيدا باللغة الإنجليزية، لكنها كانت أقل دراستها بلغات أخرى.في هذه الورقة، تضم فريقا ب
يمكن أن تسهم التحيزات المحتملة بين الجنسين الموجودة في محتوى ويكيبيديا في السلوكيات المتحيزة في مجموعة متنوعة من أنظمة NLP المصب.ومع ذلك، فإن الجهود المبذولة لفهم عدم المساواة في تصوير النساء والرجال تحدث في ويكيبيديا ركزت حتى الآن فقط على السيرة الذ
يؤثر البحث على الإنترنت على إدراك الناس في العالم، وبالتالي فإن التخفيف من التحيزات في نتائج البحث ونماذج التعلم العادلة أمر حتمي للجيدة الاجتماعية.نحن ندرس تحيز جنساني فريد من نوعه في البحث في الصورة في هذا العمل: غالبا ما تكون صور البحث في كثير من