ترغب بنشر مسار تعليمي؟ اضغط هنا

تعلم وتحليل ترتيب الجيل لنماذج التسلسل غير المعروض

Learning and Analyzing Generation Order for Undirected Sequence Models

326   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

حققت نماذج التسلسل العصبي غير المعروضة أداء تنافسية مع نماذج التسلسل الموجهة للحكومة الموجهة التي تولد رتيبا من اليسار إلى اليمين في مهام الترجمة الآلية. في هذا العمل، ندرب السياسة التي تتعلم طلب الجيل لنموذج الترجمة المدربة مسبقا مسبقا، عبر التعلم التعزيز. نظا على أن الترجمات التي تركتها أوامرنا المستفادة تحقق درجات بلو أعلى من النواتج المشفرة من اليسار إلى اليمين أو فك شفرة من قبل النظام المستفيد من منصيموف وآخرون. (2019) على مهمة الترجمة الألمانية والإنجليزية WMT'14. فيما يتعلق بالأمثلة بأقصى قدر من المصدر والمستهدف لمدة 30 من المهام الإنجليزية من DE-en و WMT'16 الإنجليزية الرومانية، فإن أمرنا المستفيد يتفوق على جميع أوامر الجيل المجهرية على ثلاثة من أربع أزواج لغوية. نقوم بالتحليل بعناية أنماط الطلب المستفادة من خلال التحليل النوعي والكمي. نظهر أن سياستنا تتبع عموما طلبا خارجيا إلى داخلي، توقع أكثر الأيسر والأيمن - معظم المناصب أولا، ثم تتحرك نحو المنتصف أثناء تخطي الكلمات الأقل أهمية في البداية. علاوة على ذلك، فإن السياسة تتوقع عادة مواقع لهيكل مؤسس بنزلي واحد في خطوات متتالية. نعتقد أن نتائجنا قد توفر المزيد من الأفكار حول آلية نماذج الجيل غير المعردة وتشجيع المزيد من البحث في هذا الاتجاه.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تكتسب توضيحات اللغة الطبيعية (NL) من التنبؤات النموذجية شعبية كوسيلة لفهم القرارات والتحقق منها من قبل النماذج المدربة مسبقا كبيرة من الصندوق الأسود، للمهام مثل الإجابة على الأسئلة (QA) والتحقق من الحقائق. مؤخرا، أثبتت التسلسل المدرب مسبقا إلى نماذج التسلسل (SEQ2SEQ) أن تكون فعالة للغاية في اتخاذ التنبؤ المشترك، بالإضافة إلى توليد تفسيرات NL. ومع ذلك، هذه النماذج لديها العديد من أوجه القصور؛ يمكنهم تصنيع توضيحات حتى بالنسبة للتنبؤات غير الصحيحة، فمن الصعب التكيف مع مستندات الإدخال الطويلة، وتتدرب تدريبها كمية كبيرة من البيانات المسمى. في هذه الورقة، نطور FID-EX، والتي تعالج هذه العيوب لنماذج SEQ2SeQ بقلم: 1) إدخال علامات جملة للقضاء على تلفيق التفسير من خلال تشجيع الجيل الاستخراجي، 2) باستخدام بنية الانصهار في وحدة فك التشفير للتعامل مع سياقات الإدخال الطويلة، و 3) توسيط الصغار على ضبط مجموعات بيانات QA المجال المفتوحة المهيكلة لتحسين أداء القليل من الطلقات. تحسن FID-السابقين بشكل كبير على العمل السابق من حيث مقاييس التفسير ودقة المهام على خمس مهام من المعيار لشرح الممحاة في كل من إعدادات الإشراف بالكامل وعدد القليلة.
تطبيقات اللغة الطبيعية المعقدة مثل ترجمة الكلام أو الترجمة المحورية تعتمد تقليديا على النماذج المتتالية. ومع ذلك، من المعروف أن النماذج المتتالية عرضة لتوسيع الأخطاء ومشاكل التناقض النموذجي. علاوة على ذلك، لا توجد إمكانية لاستخدام بيانات التدريب المن اسبة في النظم المتتالية التقليدية، مما يعني أن البيانات التدريبية الأكثر ملاءمة للمهمة لا يمكن استخدامها. اقترحت الدراسات الفقيرة عدة طرق تدريبية للتدريب المنتهي المتكاملة للتغلب عليها مشاكل، ومع ذلك، فإنهم يعتمدون في الغالب على بيانات ثلاثية الاتجاه (الاصطناعية أو الطبيعية). نقترح نموذجا متماثلا يعتمد على المحول غير التلقائي الذي يتيح التدريب المنتهي دون الحاجة إلى تمثيل واضح وسيط. تتجنب هذه الهندسة المعمارية الجديدة (I) القرارات المبكرة غير الضرورية التي يمكن أن تسبب أخطاء يتم نشرها بعد ذلك في جميع النماذج المتتالية (II) باستخدام بيانات التدريب المناسبة مباشرة. نحن نقوم بإجراء تقييم على مهام ترجمة من الآلة المحورية، وهي الفرنسية → الألمانية والألمانية → جمهورية التشيك. تظهر نتائجنا التجريبية أن الهندسة المعمارية المقترحة تعطي تحسنا أكثر من 2 بلو للفرنسية → الألمانية على خط الأساس المتتالي.
يتم استخدام AutoNCoders Varitional (VAES) على نطاق واسع للنمذجة المتغيرة الكامنة للنص.نركز على الاختلافات التي تتعلم توزيعات مسبقة معبرة على المتغير الكامن.نجد أن استراتيجيات التدريب الحالية ليست فعالة لتعلم البثور الغابات، لذلك نقترح أن نقترح إضافة احتمال هامشي لسجل الأهمية كشرطة ثانية إلى هدف VAE القياسي للمساعدة عند تعلم المقيم السابق.يؤدي القيام بذلك إلى تحسين النتائج لجميع البثور التي قامت بتقييمها، بما في ذلك اختيار جديد للجملة VAES بناء على تطبيع التدفقات (NF).لم تعد Priors المعلمة مع NF مقيدة لعائلة توزيع محددة، مما يتيح طريقة أكثر مرونة لترميز توزيع البيانات.يظهر نموذجنا، الذي نسميه FOLPRIOR، تحسنا كبيرا في مهام نمذجة اللغة مقارنة مع خطوط الأساس القوية.نحن نوضح أن flowprior يتعلم التعبير قبل التحليل والعديد من أشكال التقييم التي تنطوي على جيل.
يعد إعادة صياغة نص إعادة صياغة مهمة NLP طويلة الأمد لديها تطبيقات متنوعة على مهام NLP المصب. ومع ذلك، تعتمد فعالية الجهود الحالية في الغالب على كميات كبيرة من البيانات الذهبية المسمى. على الرغم من أن المساعي غير الخاضعة للإشعال قد اقترحت تخفيف هذه ال مسألة، إلا أنها قد تفشل في توليد صياغة هادفة بسبب عدم وجود إشارات الإشراف. في هذا العمل، نذهب إلى أبعد من النماذج الحالية واقتراح نهج رواية لتوليد صياغة عالية الجودة مع بيانات الإشراف الضعيف. على وجه التحديد، نتعامل مع مشكلة توليد إعادة صياغة الإشراف ضعيفا من خلال: (1) الحصول على جمل متوازية ضعيفة وفرة عن طريق توسيع إعادة صياغة الزائفة القائمة على استرجاع؛ و (2) تطوير إطار تعليمي التعلم إلى تحديد عينات قيمة تدريجيا لضبط النموذج اللغوي المدرب مسبقا في مهمة إعادة توجيهها مسبقا في مهمة إعادة الصياغة الخطية. نوضح أن نهجنا يحقق تحسينات كبيرة على النهج القائمة غير المدمرة، وهو ما يمكن قابلة للمقارنة في الأداء مع أحدث من الفنون المغلفة.
النمذجة المتنقلة المتسلسلة قوية هي مهمة أساسية في العالم الحقيقي حيث تكون المدخلات صاخبة في كثير من الأحيان. تحتوي المدخلات التي تم إنشاؤها عن المستخدمين والآلة على أنواع مختلفة من الضوضاء في شكل أخطاء إملائية، والأخطاء النحوية، وأخطاء التعرف على الأ حرف، والتي تؤثر على مهام المصب وتأثر على الترجمة الشفوية للنصوص. في هذا العمل، نرتند بنية جديدة للتسلسل إلى التسلسل للكشف عن وتصحيح مختلف العالم الحقيقي والضوضاء الاصطناعية (هجمات الخصومة) من النصوص الإنجليزية. نحو ذلك اقترحنا بنية فك التشفير المعدلة التي تعتمد على المحولات التي تستخدم آلية Gating للكشف عن أنواع التصحيحات المطلوبة وبناء على تصحيح النصوص. تظهر النتائج التجريبية أن الهندسة المعمارية المصورة لدينا مع نماذج لغوية مدربة مسبقا تؤدي بشكل أفضل بشكل كبير إلى أن النظيرات غير الدائرين ونماذج تصحيح الأخطاء الأخرى غير المدرجة في تصحيح الأخطاء الإملائية والحدائية. التقييم الخارجي لنموذجنا على الترجمة الآلية (MT) ومهام التلخيص تظهر الأداء التنافسي للنموذج مقابل نماذج تسلسل تسلسل أخرى أخرى تحت المدخلات الصاخبة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا