النمذجة المتنقلة المتسلسلة قوية هي مهمة أساسية في العالم الحقيقي حيث تكون المدخلات صاخبة في كثير من الأحيان. تحتوي المدخلات التي تم إنشاؤها عن المستخدمين والآلة على أنواع مختلفة من الضوضاء في شكل أخطاء إملائية، والأخطاء النحوية، وأخطاء التعرف على الأحرف، والتي تؤثر على مهام المصب وتأثر على الترجمة الشفوية للنصوص. في هذا العمل، نرتند بنية جديدة للتسلسل إلى التسلسل للكشف عن وتصحيح مختلف العالم الحقيقي والضوضاء الاصطناعية (هجمات الخصومة) من النصوص الإنجليزية. نحو ذلك اقترحنا بنية فك التشفير المعدلة التي تعتمد على المحولات التي تستخدم آلية Gating للكشف عن أنواع التصحيحات المطلوبة وبناء على تصحيح النصوص. تظهر النتائج التجريبية أن الهندسة المعمارية المصورة لدينا مع نماذج لغوية مدربة مسبقا تؤدي بشكل أفضل بشكل كبير إلى أن النظيرات غير الدائرين ونماذج تصحيح الأخطاء الأخرى غير المدرجة في تصحيح الأخطاء الإملائية والحدائية. التقييم الخارجي لنموذجنا على الترجمة الآلية (MT) ومهام التلخيص تظهر الأداء التنافسي للنموذج مقابل نماذج تسلسل تسلسل أخرى أخرى تحت المدخلات الصاخبة.
Robust sequence-to-sequence modelling is an essential task in the real world where the inputs are often noisy. Both user-generated and machine generated inputs contain various kinds of noises in the form of spelling mistakes, grammatical errors, character recognition errors, all of which impact downstream tasks and affect interpretability of texts. In this work, we devise a novel sequence-to-sequence architecture for detecting and correcting different real world and artificial noises (adversarial attacks) from English texts. Towards that we propose a modified Transformer-based encoder-decoder architecture that uses a gating mechanism to detect types of corrections required and accordingly corrects texts. Experimental results show that our gated architecture with pre-trained language models perform significantly better that the non-gated counterparts and other state-of-the-art error correction models in correcting spelling and grammatical errors. Extrinsic evaluation of our model on Machine Translation (MT) and Summarization tasks show the competitive performance of the model against other generative sequence-to-sequence models under noisy inputs.
المراجع المستخدمة
https://aclanthology.org/
تطبيقات اللغة الطبيعية المعقدة مثل ترجمة الكلام أو الترجمة المحورية تعتمد تقليديا على النماذج المتتالية. ومع ذلك، من المعروف أن النماذج المتتالية عرضة لتوسيع الأخطاء ومشاكل التناقض النموذجي. علاوة على ذلك، لا توجد إمكانية لاستخدام بيانات التدريب المن
النصوص التي تلتقط المعرفة المنطقية حول الأنشطة اليومية والمشاركين.أثبتت معرفة البرنامج النصي مفيدة في عدد من مهام NLP، مثل التنبؤ المراجع، تصنيف الخطاب، وتوليد القصة.إن خطوة حاسمة لاستغلال معرفة البرنامج النصي هي تحليل البرنامج النصي، ومهمة وضع علامة
تكتسب توضيحات اللغة الطبيعية (NL) من التنبؤات النموذجية شعبية كوسيلة لفهم القرارات والتحقق منها من قبل النماذج المدربة مسبقا كبيرة من الصندوق الأسود، للمهام مثل الإجابة على الأسئلة (QA) والتحقق من الحقائق. مؤخرا، أثبتت التسلسل المدرب مسبقا إلى نماذج
تم تطبيق نماذج التسلسل إلى التسلسل على مجموعة واسعة من مهام NLP، ولكن كيفية استخدامها بشكل صحيح لتتبع حالة الحوار بشكل منهجي. في هذه الورقة، ندرس هذه المشكلة من وجهات نظر أهداف ما قبل التدريب وكذلك تنسيقات تمثيلات السياق. نوضح أن اختيار الهدف ما قبل
تعرف مهمة تحويل نص غير قياسي إلى نص قياسي وقابل للقراءة باسم التطبيع المعجمي. تتطلب جميع تطبيقات معالجة اللغة الطبيعية تقريبا (NLP) البيانات النصية في النموذج الطبيعي لإنشاء نماذج محددة ذات جودة عالية. وبالتالي، فقد ثبت التطبيع المعجمي لتحسين أداء ال