نظرا لأن طرازات لغة واسعة النطاق مدربة مسبقا تحقق دقة على المستوى البشري والأخبار الدقة على مهام فهم اللغة الحالية، دعت التحيز الإحصائي في البيانات القياسية والدراسات التحقيق مؤخرا إلى قدراتهم الحقيقية.للحصول على تقييم أكثر إعلانية من الدقة بشأن مهام تصنيف النص يمكن أن تقدم، نقترح تقييم أنظمة من خلال مقياس جديد لتماسك التنبؤ.نحن نطبق إطار عملنا على اثنين من التفاهم مع المعايير ذات الخصائص المختلفة لإظهار تنوعه.تبين نتائجنا التجريبية أن إطار التقييم هذا، على الرغم من بسيطة في الأفكار والتنفيذ، هو إجراء سريع وفعال وتنوعا لتوفير نظرة ثاقبة في تماسك تنبؤات الآلات.
As large-scale, pre-trained language models achieve human-level and superhuman accuracy on existing language understanding tasks, statistical bias in benchmark data and probing studies have recently called into question their true capabilities. For a more informative evaluation than accuracy on text classification tasks can offer, we propose evaluating systems through a novel measure of prediction coherence. We apply our framework to two existing language understanding benchmarks with different properties to demonstrate its versatility. Our experimental results show that this evaluation framework, although simple in ideas and implementation, is a quick, effective, and versatile measure to provide insight into the coherence of machines' predictions.
المراجع المستخدمة
https://aclanthology.org/
تركز العديد من النهج الحالية لتفسير نماذج تصنيف النص على توفير الأهمية عشرات لأجزاء من نص الإدخال، مثل الكلمات، ولكن دون أي طريقة لاختبار أو تحسين طريقة التفسير نفسها. هذا له تأثير مزعج مشكلة فهم أو بناء الثقة في النموذج، مع طريقة التفسير نفسها إضافة
هدف البحث إلى تعرف درجة معرفة و توظيف المدرسين لاستراتيجيات التفكير ما
وراء المعرفي في تعليم الطلبة المتفوقين عقليا في مدينة دمشق, و معرفة دلالة الفروق في
درجة معرفتي و توظيفي لهذه الاستراتيجيات تبعا لمتغيري (الدورات التدريبية, المؤهل
العلمي). و ت
فهم عندما لا يوفر مقتطف النص معلومات سعية بعد هي جزء أساسي من اللغة الطبيعية Utnderstanding. العمل الحديث (Squad 2.0؛ Rajpurkar et al.، 2018) حاولت إحراز بعض التقدم في هذا الاتجاه من خلال إثراء بيانات الفريق الخاصة بمهمة ضمان الجودة الاستخراجية مع أس
يلعب تقدير الجودة (QE) دورا أساسيا في تطبيقات الترجمة الآلية (MT).تقليديا، يقبل نظام QE النصي المصدر الأصلي والترجمة من نظام MT مربع أسود كإدخال.في الآونة الأخيرة، تشير بعض الدراسات إلى أنه كمنتج ثانوي للترجمة، يستفيد QE من نموذج معلومات بيانات النمو
تجزئة موضوع الحوار أمر بالغ الأهمية في العديد من مشاكل نموذج الحوار.ومع ذلك، فإن النهج الشائعة غير المعينة الشائعة لاستغلال الميزات السطحية فقط في تقييم التماسك الموضعي بين الكلام.في هذا العمل، نتعامل مع هذا القيد من خلال الاستفادة من الإشارات الإشرا