ترغب بنشر مسار تعليمي؟ اضغط هنا

ترجمة نصوص النص عن طريق تعلم التأثير الحساس للسياق للكلمات

Interpreting Text Classifiers by Learning Context-sensitive Influence of Words

162   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تركز العديد من النهج الحالية لتفسير نماذج تصنيف النص على توفير الأهمية عشرات لأجزاء من نص الإدخال، مثل الكلمات، ولكن دون أي طريقة لاختبار أو تحسين طريقة التفسير نفسها. هذا له تأثير مزعج مشكلة فهم أو بناء الثقة في النموذج، مع طريقة التفسير نفسها إضافة إلى عتامة النموذج. علاوة على ذلك، فإن العشرات الأهمية حول الأمثلة الفردية عادة ما تكون لا تكفي لتوفير صورة كافية من السلوك النموذجي. لمعالجة هذه المخاوف، نقترح Moxie (تأثير النمذجة الحساسة للكلمات) بهدف تمكين واجهة أكثر ثراء للمستخدم للتفاعل مع النموذج الذي يتم تفسيره وإنتاج تنبؤات قابلة للإصابة. على وجه الخصوص، نهدف إلى تقديم تنبؤات لعشرات الأهمية والمعدات المضادة والتحيزات المستفادة مع Moxie. بالإضافة إلى ذلك، مع هدف التعلم العالمي، يوفر Moxie مسارا واضحا لاختبار وتحسين نفسها. نقيم موثوقية وكفاءة Moxie على مهمة تحليل المعنويات.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

التعميمات الصوتية مجردة هي حالة محدودة.في حين أن النظرية المثيرة للتطبيقات هي إطار شائع لأمراض النمذجة، من المعروف أنها توليد تعيينات ولغات غير محدودة.توضح هذه الورقة أن النظرية المثيلة قادرة على توليد لغات خالية من السياق، والمساهمة في توصيف قدرتها الإندنية.يتحقق هذا مع الحد الأدنى من التعديل للنظرية حيث يتم استخدامه بشكل يكلف.
نقترح معالجة مهام توليد البيانات إلى النص عن طريق الربط مباشرة من جانب شرائح النص من الأزواج المستهدفة من الجيران.على عكس العمل الحديث الذي تقوم بالشروط على الجيران المسترجع ولكن يولد رمزا نصي نصي، من اليسار إلى اليمين، نتعلم السياسة التي تتعامل مباش رة على شرائح النص الجار، عن طريق إدخال أو استبدالها بأجيال مبنية جزئيا.تتطلب التقنيات القياسية للتدريب مثل هذه السياسة عن اشتقاق أوراكل لكل جيل، ونثبت أن العثور على أقصر مثل هذا الاشتقاق يمكن تخفيضها إلى التحليل تحت قواعد محددة معينة خالية من السياق.نجد أن السياسات المستفادة بهذه الطريقة تؤدي على قدم المساواة مع خطوط أساس قوية من حيث التقييم التلقائي والبشري، ولكن السماح لمزيد من الجيل القابل للتفسير والتحكم.
نقترح إجراء تقييم جودة خاص بالرجوع إلى مرجعية، مع التركيز على الإخلاص.يعتمد الإجراء على إيجاد وعد جميع التناقضات المحتملة المحتملة في الملخص فيما يتعلق بالوثيقة المصدر.يرتبط مؤشر الإستيم المقترح ومقدر عدم تناسق الملخص من خلال المدينات غير المعطاة بدر جات الخبراء في مجموعة بيانات STOMEVAL للمستوى الملخص أقوى من تدابير التقييم المشتركة الأخرى ليس فقط في الاتساق ولكن أيضا في الطلاقة.نقدم أيضا طريقة لتوليد أخطاء واقعية خفية في ملخصات بشرية.نظهر أن ESTIME أكثر حساسية للأخطاء الدقيقة من تدابير التقييم المشتركة الأخرى.
نظرا لأن طرازات لغة واسعة النطاق مدربة مسبقا تحقق دقة على المستوى البشري والأخبار الدقة على مهام فهم اللغة الحالية، دعت التحيز الإحصائي في البيانات القياسية والدراسات التحقيق مؤخرا إلى قدراتهم الحقيقية.للحصول على تقييم أكثر إعلانية من الدقة بشأن مهام تصنيف النص يمكن أن تقدم، نقترح تقييم أنظمة من خلال مقياس جديد لتماسك التنبؤ.نحن نطبق إطار عملنا على اثنين من التفاهم مع المعايير ذات الخصائص المختلفة لإظهار تنوعه.تبين نتائجنا التجريبية أن إطار التقييم هذا، على الرغم من بسيطة في الأفكار والتنفيذ، هو إجراء سريع وفعال وتنوعا لتوفير نظرة ثاقبة في تماسك تنبؤات الآلات.
حقق التعلم التلوي نجاحا كبيرا في الاستفادة من المعرفة المستفادة التاريخية لتسهيل عملية التعلم المهمة الجديدة.ومع ذلك، فإن تعلم معرفة المهام التاريخية، التي اعتمدتها خوارزميات التعلم التلوي الحالية، قد لا تعميم بشكل جيد للاختبار المهام عندما لا تكون م دعومة جيدا بمهام التدريب.تدرس هذه الورقة مشكلة تصنيف النص المنخفض للموارد ويزيد الفجوة بين مهام اختبار التوطين والاختبار التلوي من خلال الاستفادة من قواعد المعرفة الخارجية.على وجه التحديد، نقترح KGML لإدخال تمثيل إضافي لكل جملة مستفادة من الرسم البياني المعرفي الخاص بالحكم الجملة المستخرجة.توضح التجارب الواسعة على ثلاثة مجموعات بيانات فعالية KGML تحت كلا من إعدادات التكيف والإشراف غير المدفوع.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا