يقلل اعتراف الكيان المسمى بشكل مسمى (DS-NER) بكفاءة تكاليف العمالة بل في الوقت نفسه يعاني من ضوضاء الملصقات بسبب الافتراض القوي للإشراف البعيد.عادة ما تشتمل الحالات المسماة بشكل خاطئ على أرقام التعليقات التوضيحية غير المكتملة وغير الدقيقة، في حين أن معظم أعمال Denoising السابقة تشعر بالقلق فقط بنوع من الضوضاء وتفشل في استكشاف معلومات مفيدة بالكامل في مجموعة التدريب.لمعالجة هذه المشكلة، نقترح نماذج تعليمية قوية تسمى التعلم التعاوني الذاتي التعاونية (SCDL)، والتي تدرب بشاشات اثنين من شبكات الطلاب المعلمين بطريقة منفعة متبادلة لتنفيذ مصفاة التسمية الصاخبة بشكل متكرر.تم تصميم كل شبكة لاستغلال ملصقات موثوقة عبر Denoising الذاتي، ويتواصل شبكتان مع بعضهما البعض لاستكشاف التعليقات التوضيحية غير الموثوق بها من خلال تنظيم تعاوني.نتائج تجريبية واسعة النطاق على خمسة مجموعات بيانات حقيقية عالمية توضح أن SCDL متفوقة على طرق DS-NER DENOSION حول DS-NER.
Distantly supervised named entity recognition (DS-NER) efficiently reduces labor costs but meanwhile intrinsically suffers from the label noise due to the strong assumption of distant supervision. Typically, the wrongly labeled instances comprise numbers of incomplete and inaccurate annotations, while most prior denoising works are only concerned with one kind of noise and fail to fully explore useful information in the training set. To address this issue, we propose a robust learning paradigm named Self-Collaborative Denoising Learning (SCDL), which jointly trains two teacher-student networks in a mutually-beneficial manner to iteratively perform noisy label refinery. Each network is designed to exploit reliable labels via self denoising, and two networks communicate with each other to explore unreliable annotations by collaborative denoising. Extensive experimental results on five real-world datasets demonstrate that SCDL is superior to state-of-the-art DS-NER denoising methods.
المراجع المستخدمة
https://aclanthology.org/
النماذج الخاضعة للإشراف المستمرة تحظى بشعبية كبيرة بالنسبة لاستخراج العلاقة لأنه يمكننا الحصول على كمية كبيرة من البيانات التدريبية باستخدام طريقة الإشراف البعيدة دون شرح بشري.في الإشراف البعيد، تعتبر الجملة بمثابة مصدر Tuple إذا كانت الجملة تحتوي عل
نستكشف تطبيق خوارزميات NER-Art-Branch إلى نصوص مركز الاتصال التي تم إنشاؤها ASR. ركز العمل السابق في هذا المجال على استخدام نموذج Bilstm-CRF الذي اعتمد على تضمين الدعوى؛ ومع ذلك، فإن مثل هذا النموذج غير عملي من حيث الكمون واستهلاك الذاكرة. في بيئة ال
في حين أن التعرف على الكيان المسمى (NER) من الكلام كان موجودا طالما أن NER من نص مكتوب لديه، فإن دقة NER من الكلام كانت أيضا أقل بكثير من NER من النص. يبرز ارتفاع شعبية أنظمة الحوار المنطوقة مثل Siri أو Alexa الحاجة إلى أكثر دقة من الكلام من الكلام ل
يحتاج تحليل الأدبيات العلمي إلى التعرف على الكيان المسمى بشكل جيد (NER) لتوفير مجموعة واسعة من المعلومات للاكتشاف العلمي. على سبيل المثال، يحتاج أبحاث الكيمياء إلى دراسة العشرات إلى مئات أنواع الكيانات المتميزة والجمالية المميزة، مما يجعل التعليق الت
في الوقت الحاضر، حقق التعرف على الكيان المسمى (NER) نتائج ممتازة على الشركة القياسية.ومع ذلك، فإن المشكلات الكبيرة تنشأ مع الحاجة إلى تطبيق في مجال معين، لأنه يتطلب جدارا الشكل المشروح مع مجموعة علامات NE مكيفة.هذا واضح بشكل خاص في مجال معالجة المستن