ترغب بنشر مسار تعليمي؟ اضغط هنا

تحسين التعرف على الكيان المسمى في أنظمة الحوار المنطوق حسب النمذجة السياق ونمط الكلام

Improving Named Entity Recognition in Spoken Dialog Systems by Context and Speech Pattern Modeling

358   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في حين أن التعرف على الكيان المسمى (NER) من الكلام كان موجودا طالما أن NER من نص مكتوب لديه، فإن دقة NER من الكلام كانت أيضا أقل بكثير من NER من النص. يبرز ارتفاع شعبية أنظمة الحوار المنطوقة مثل Siri أو Alexa الحاجة إلى أكثر دقة من الكلام من الكلام لأن NER هو مكون أساسي لفهم ما قاله المستخدمون في الحوار. تتلقى أنظمة الحوار المنطوقة المنطوقة إدخال المستخدم في شكل نصوص التعرف على الكلام التلقائي (ASR)، وببساطة تطبيق نموذج NER المدربين على النص المكتوب إلى نصوص ASR غالبا ما يؤدي إلى دقة منخفضة لأنها مقارنة بالنص المكتبكي، تفتقر نصوص ASR إلى إشارات مهمة مثل علامات الترقيم والرسملة. علاوة على ذلك، فإن الأخطاء في نصوص العصر تجعل أيضا NER من الكلام الصعب. نقترح نماذجين تستغلوا أدلة سياق الحوار ونمط الكلام لاستخراج الكيانات المسماة بدقة أكثر دقة من مربعات الحوار المفتوحة في أنظمة الحوار المنطوقة. تظهر نتائجنا الاستفادة من سياق حوار النمذجة وأنماط الكلام في إعدادتين: إعداد قياسي مع قسم عشوائي من البيانات وأكثر واقعية من الإعداد ولكن أيضا أكثر صعوبة حيث تكون العديد من الكيانات المسماة التي تمت مواجهتها أثناء النشر غير مرئي أثناء التدريب.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

الملخص في هذا العمل، ندرس قدرة نماذج NER لاستخدام المعلومات السياقية عند التنبؤ بنوع كيان غامض.نقدم NRB، اختبار جديد مصمم بعناية لتشخيص تحيز الانتظام من النماذج NER.تشير نتائجنا إلى أن جميع النماذج الحديثة التي اختبرناها إظهار مثل هذا التحيز؛نماذج Be rt Tuned Tunded بشكل كبير تفوقها بشكل كبير (LSTM-CRF) على NRB، على الرغم من وجود أداء قابلة للمقارنة (أحيانا أقل) على المعايير القياسية.لتخفيف هذا التحيز، نقترح طريقة تدريب نموذجية نماذج جديدة تضيف الضوضاء المخدرة القابلة للتعلم إلى بعض الكيانات، وبالتالي فرض النماذج للتركيز بقوة أكبر على الإشارة السياقية، مما يؤدي إلى مكاسب كبيرة على NRB.الجمع بينه مع استراتيجيات تدريبية أخرى، وتعزيز البيانات وتجميد المعلمة، يؤدي إلى مزيد من المكاسب.
نستكشف تطبيق خوارزميات NER-Art-Branch إلى نصوص مركز الاتصال التي تم إنشاؤها ASR. ركز العمل السابق في هذا المجال على استخدام نموذج Bilstm-CRF الذي اعتمد على تضمين الدعوى؛ ومع ذلك، فإن مثل هذا النموذج غير عملي من حيث الكمون واستهلاك الذاكرة. في بيئة ال إنتاج، يتطلب المستخدمون النهائيون نماذج منخفضة الكمون التي يمكن دمجها بسهولة في خطوط الأنابيب الموجودة. ولتحقيق هذه الغاية، نقدم نماذجين مختلفة يمكن استخدامها بناء على متطلبات الكمون والدقة للمستخدم. أولا، نقترح مجموعة من النماذج التي تستخدم نماذج لغة محول الحديثة (روبرتا) لتطوير نظام NER عالية الدقة المدربين على مجموعة مشروحة مخصصة من نصوص مركز الاتصال. بعد ذلك، نستخدم نموذجنا المستند إلى المحولات الأفضل أداء لتسمية عدد كبير من النصوص، والذي نستخدمه للتأهيل بنموذج BILSTM-CRF ويزيد من الاستحقاق على مجموعة بيانات المشروح. نظرا لأن هذا النموذج، في حين ليس دقيقا مثل نظيره القائم على المحولات، فهو فعال للغاية في تحديد العناصر التي تتطلب تحسين قانون الخصوصية. علاوة على ذلك، نقترح مخططا شرحا عاما جديدا ل NER في بيئة مركز الاتصال.
الملخص نتخذ خطوة نحو معالجة تمثيل القارة الأفريقية في أبحاث NLP من خلال جلب مختلف أصحاب المصلحة من أصحاب المصلحة في إنشاء بيانات كبيرة متاحة للجمهور وعالية الجودة للتعرف على الكيان المسمى (NER) في عشرة لغات أفريقية.إننا نقوم بالتفصيل خصائص هذه اللغات لمساعدة الباحثين والممارسين على فهم التحديات التي يفرضونها على مهام NER.نقوم بتحليل مجموعات البيانات لدينا وإجراء تقييم تجريبي واسع النطاق للطرق الحكومية في جميع إعدادات التعلم الإشراف والنقل.أخيرا، نطلق سراح البيانات والرمز والنماذج لإلهام البحوث المستقبلية على الأفريقية NLP.1
يدل العمل الحالي في التعرف على الكيان المسمى (NER) أن تقنيات تكبير البيانات يمكن أن تنتج نماذج أكثر قوة.ومع ذلك، تركز معظم التقنيات الموجودة على زيادة البيانات داخل المجال في سيناريوهات الموارد المنخفضة حيث تكون البيانات المشروحة محدودة للغاية.في هذا العمل، نأخذ هذا الاتجاه البحثي إلى المعاكس ودراسة تكبير بيانات المجال عبر المجال لمهمة NER.نحن نبحث في إمكانية الاستفادة من البيانات من مجالات الموارد العالية من خلال إسقاطها في مجالات الموارد المنخفضة.على وجه التحديد، نقترح بنية عصبية رواية لتحويل تمثيل البيانات من الموارد العالية إلى مجال موارد منخفضة من خلال تعلم الأنماط (مثل الأناقة والضوضاء والاختصارات، وما إلى ذلك) في النص الذي يميزها ومساحة ميزة مشتركةحيث يتماشى كلا المجالين.نقوم بتجربة مجموعات بيانات متنوعة وإظهار أن تحويل البيانات إلى تمثيل مجال الموارد المنخفض يحقق تحسينات كبيرة على استخدام البيانات فقط من مجالات الموارد العالية.
يتزايد استخدام التعرف على الكيان المسمى (NER) على النصوص العربية القديمة بشكل مطرد.ومع ذلك، فقد تم تطوير معظم الأدوات لإرجاع اللغة الإنجليزية الحديثة أو تدربت على وثائق اللغة الإنجليزية وهي محدودة للنص العربي التاريخي.حتى أدوات NER العربية غالبا ما ت درب على نص حديث من مصادر الويب، مما يجعل مناسبا له بمهمة تاريخية مشكوك فيها.لتخفيف ندرة الموارد العربية السعودية العربية، نقترح نموذج فرقة ديناميكية باستخدام العديد من المتعلمين.يتم تحقيق الجانب الديناميكي من خلال الاستفادة من التنبؤ والميزات على نتائج خوارزمية NER التي حددت التي أجريت بشكل أفضل على مهمة محددة في الوقت الفعلي.نقوم بتقييم نهجنا ضد أحدث أساليب النيران العربية والثابتة من أساليب الفرقة الثابتة عبر مهمة تاريخية تاريخية جديدة التي أنشأناها.تظهر نتائجنا أن نهجنا يحسن على أحدث ويودر من 0.8 درجة مئوية بشأن هذه المهمة الصعبة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا