ترغب بنشر مسار تعليمي؟ اضغط هنا

هل يتفقد مفاجأة؟التقييم المستهدف للتنبؤ بالتماسك من نماذج اللغة

Is Incoherence Surprising? Targeted Evaluation of Coherence Prediction from Language Models

307   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تتميز خطاب متماسك من مجرد مجموعة من الكلام من خلال إرضاء مجموعة متنوعة من القيود، على سبيل المثال اختيار التعبير والعلاقة المنطقية بين الأحداث المعلقة والتوافق الضمني مع المعرفة العالمية.هل ترمز نماذج اللغة العصبية هذه القيود؟نقوم بتصميم مجموعة قابلة للتمديد من أجنحة الاختبار التي تتناول جوانب مختلفة من الخطاب والتماسك الحوار.على عكس معظم دراسات تقييم التماسك السابق، فإننا نتعامل مع الأجهزة اللغوية المحددة وراء اضطرابات أمر الجملة، والتي تسمح بتحليل أكثر غرامة لما يشكل الاتساق وما هي النماذج العصبية المدربة على هدف نمذجة اللغة قادرة على الترميز.تمديد نموذج التقييم المستهدف لنماذج اللغة العصبية (مارفين ولينزن، 2018) إلى الظواهر بعد بناء الجملة، نظين على أن هذا النموذج مناسب بنفس القدر لتقييم الصفات اللغوية التي تسهم في مفهوم التماسك.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

غالبا ما يتم تقييم نماذج اللغة المستخدمة في التعرف على الكلام بشكل جوهري باستخدام حيرة في بيانات الاختبار أو غير مسبوق مع نظام التعرف على الكلام التلقائي (ASR). لا يرتبط التقييم السابق دائما بشكل جيد مع أداء ASR، في حين أن الأخير يمكن أن يكون محددا ل أنظمة ASR معينة. اقترح العمل الحديث لتقييم نماذج اللغة باستخدامها لتصنيف جمل الحقيقة الأرضية بين جمل مماثلة للالعناد الصوتي الناتج عن محول الدولة الدقيقة. مثل هذا التقييم هو افتراض أن الجمل التي تم إنشاؤها غير صحيحة لغويا. في هذه الورقة، وضعنا أولا هذا الافتراض موضع السؤال، ومراقبة أن الجمل التي تم إنشاؤها بدلا من ذلك قد تكون صحيحة في كثير من الأحيان لغويا عندما تختلف عن الحقيقة الأرضية بواسطة تحرير واحد فقط. ثانيا، أظهرنا أنه باستخدام بيرت متعددة اللغات، يمكننا تحقيق أداء أفضل من العمل السابق على مجموعات بيانات تبديل التعليمات البرمجية. تطبيقنا متاح علنا ​​على Github في https://github.com/sikfeng/language-modelling-for-code-Switching.
نقدم خوارزمية تدريبية مستهدفة بسيطة ولكنها فعالة (TAT) لتحسين التدريب الخصم لفهم اللغة الطبيعية.الفكرة الرئيسية هي أن تخطئ الأخطاء الحالية وتحديد أولويات التدريب على الخطوات إلى حيث يخطئ النموذج أكثر.تظهر التجارب أن TAT يمكن أن تحسن بشكل كبير الدقة ع لى التدريب الخصم القياسي على الغراء وتحقيق نتائج جديدة من أحدث النتائج في XNLI.سيتم إصدار شفرة لدينا عند قبول الورقة.
تحقق هذه الورقة فيما إذا كانت قوة النماذج المدربة مسبقا على البيانات النصية، مثل Bert، يمكن نقلها إلى تطبيقات تصنيف تسلسل الرمز المميز.للتحقق من قابلية نقل النماذج المدربة مسبقا، نقوم باختبار النماذج المدربة مسبقا على مهام تصنيف النص مع معاني عدم تطا بق الرموز، وبيانات تصنيف تسلسل التسلسل غير المدرسي في العالم الحقيقي، بما في ذلك الحمض الأميني والحمض النووي والموسيقى.نجد أنه حتى على البيانات غير النصية، تتخطى النماذج المدربة مسبقا على النص بشكل أسرع، وأداء أفضل من النماذج ذات الادعاء بشكل عشوائي، وأسوأ قليلا فقط من النماذج باستخدام المعرفة الخاصة بمهام المهام.نجد أيضا أن تمثيل النماذج المدربة مسبقا للنصوص وغير النصية تشترك في أوجه التشابه غير التافهة.
في هذه الدراسة، نقترح طريقة تعلم الإشراف على الذات التي تطبق تمثيلات معنى الكلمات في السياق من نموذج لغة ملثم مسبقا مسبقا. تعد تمثيلات الكلمات هي الأساس للدلالات المعجمية في السياق وتقديرات التشابه المنصوصية الدلالية غير المرفوعة (STS). تقوم الدراسة السابقة بتحويل التمثيلات السياقية التي تستخدم تضمين كلمة ثابتة لإضعاف الآثار المفرطة لمعلومات السياقية. على النقيض من ذلك، تستمد الأسلوب المقترح على تمثيلات كلمة معنى في السياق مع الحفاظ على معلومات السياق المفيدة سليمة. على وجه التحديد، تتعلم طريقةنا الجمع بين مخرجات الطبقات المخفية المختلفة التي تستخدم الانتباه عن الذات من خلال التعلم الذاتي الخاضع للإشراف مع كائن تدريب تلقائيا تلقائيا. لتقييم أداء النهج المقترح، أجرينا تجارب مقارنة باستخدام مجموعة من المهام القياسية. تؤكد النتائج أن تمثيلاتنا أظهرت أداء تنافسي مقارنة بسلطة حديثة من الأسلوب لتحويل التمثيلات السياقية للمهام الدلالية المعجمية السياقة وتفوقها على تقدير STS.
يتم تدريب نماذج اللغة بشكل عام على تسلسل المدخلات القصيرة والمتقطعة، والتي تحد من قدرتها على استخدام معلومات مستوى الخطاب الموجودة في سياق طويل المدى لتحسين تنبؤاتها. أدت الجهود الأخيرة لتحسين كفاءة اهتمام الذات إلى انتشار نماذج لغة محول طويلة المدى، والتي يمكن أن تعالج تسلسل أطول بكثير من نماذج الماضي. ومع ذلك، تبقى الطرق التي تستفيد منها هذه النماذج من السياق الطويل المدى غير واضح. في هذه الورقة، نقوم بإجراء تحليل جيد الحبيبات من طرازات لغة محول طويلة المدى (بما في ذلك محول التوجيه، والذي يحقق حيرة من الفن الحيرة على مجموعة بيانات BG-19 المتسلسلة LM Transmark) التي تقبل المدخلات تسلسل يصل إلى 8K الرموز. نتائجنا تكشف عن توفير سياق طويل المدى (أي، خارج الرموز 2K السابقة) لهذه النماذج يحسن فقط تنبؤاتها على مجموعة صغيرة من الرموز (على سبيل المثال، تلك التي يمكن نسخها من السياق البعيد) ولا يساعد على الإطلاق لمهام التنبؤ على مستوى الجملة. أخيرا، نكتشف أن PG-19 تحتوي على مجموعة متنوعة من أنواع المستندات والمجالات المختلفة، وأن السياق الطويل المدى يساعد معظمها على الروايات الأدبية (بدلا من الكتب المدرسية أو المجلات).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا