غالبا ما يتم تقييم نماذج اللغة المستخدمة في التعرف على الكلام بشكل جوهري باستخدام حيرة في بيانات الاختبار أو غير مسبوق مع نظام التعرف على الكلام التلقائي (ASR). لا يرتبط التقييم السابق دائما بشكل جيد مع أداء ASR، في حين أن الأخير يمكن أن يكون محددا لأنظمة ASR معينة. اقترح العمل الحديث لتقييم نماذج اللغة باستخدامها لتصنيف جمل الحقيقة الأرضية بين جمل مماثلة للالعناد الصوتي الناتج عن محول الدولة الدقيقة. مثل هذا التقييم هو افتراض أن الجمل التي تم إنشاؤها غير صحيحة لغويا. في هذه الورقة، وضعنا أولا هذا الافتراض موضع السؤال، ومراقبة أن الجمل التي تم إنشاؤها بدلا من ذلك قد تكون صحيحة في كثير من الأحيان لغويا عندما تختلف عن الحقيقة الأرضية بواسطة تحرير واحد فقط. ثانيا، أظهرنا أنه باستخدام بيرت متعددة اللغات، يمكننا تحقيق أداء أفضل من العمل السابق على مجموعات بيانات تبديل التعليمات البرمجية. تطبيقنا متاح علنا على Github في https://github.com/sikfeng/language-modelling-for-code-Switching.
Language models used in speech recognition are often either evaluated intrinsically using perplexity on test data, or extrinsically with an automatic speech recognition (ASR) system. The former evaluation does not always correlate well with ASR performance, while the latter could be specific to particular ASR systems. Recent work proposed to evaluate language models by using them to classify ground truth sentences among alternative phonetically similar sentences generated by a fine state transducer. Underlying such an evaluation is the assumption that the generated sentences are linguistically incorrect. In this paper, we first put this assumption into question, and observe that alternatively generated sentences could often be linguistically correct when they differ from the ground truth by only one edit. Secondly, we showed that by using multi-lingual BERT, we can achieve better performance than previous work on two code-switching data sets. Our implementation is publicly available on Github at https://github.com/sikfeng/language-modelling-for-code-switching.
المراجع المستخدمة
https://aclanthology.org/
لا يزال التبديل (CS)، ظاهرة في كل مكان بسبب سهولة الاتصالات التي تقدمها في المجتمعات متعددة اللغات لا تزال مشكلة متفائلة في معالجة اللغة. الأسباب الرئيسية وراء ذلك هي: (1) الحد الأدنى من الجهود في الاستفادة من نماذج متعددة اللغات متعددة اللغات الكبير
في هذه الورقة نقدم نموذج إكمال رمز التعلم العميق للغة R.نقدم عدة تقنيات لاستخدام الهندسة المعمارية القائمة على نمذجة اللغة في مهمة إكمال التعليمات البرمجية.مع هذه التقنيات، يتطلب النموذج موارد منخفضة، ولكن لا يزال يحقق جودة عالية.نقدم أيضا بيانات تقي
تتميز خطاب متماسك من مجرد مجموعة من الكلام من خلال إرضاء مجموعة متنوعة من القيود، على سبيل المثال اختيار التعبير والعلاقة المنطقية بين الأحداث المعلقة والتوافق الضمني مع المعرفة العالمية.هل ترمز نماذج اللغة العصبية هذه القيود؟نقوم بتصميم مجموعة قابلة
جيل النص هو مجال نشط للغاية في البحث في المجتمع اللغوي الحسابي.يعد تقييم النص الذي تم إنشاؤه مهمة صعبة وتم اقتراح نظريات ومقاييس متعددة على مر السنين.لسوء الحظ، يتم إدراج توليد النص والتقييم نسبيا نسبيا بسبب ندرة الموارد عالية الجودة في اللغات المختل
نحن نقيم استخدام مهام التقييم المباشر الواسعة للكلمة المباشرة للغة المتخصصة.دراسة علمنا هي النص الفلسفي: يتم إخراج أحكام الخبراء البشري على رابط المصطلحات الفلسفية باستخدام مهمة اكتشاف مرادف ومهمة الاتساق.بشكل فريد لمهامنا، يجب على الخبراء الاعتماد ع