ترغب بنشر مسار تعليمي؟ اضغط هنا

في أسرع وقت ممكن: مجموعة بيانات مراجعة صينية نحو تحليل المشاعر الفئة للأسف

ASAP: A Chinese Review Dataset Towards Aspect Category Sentiment Analysis and Rating Prediction

277   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

اجتذبت تحليل المعنويات الاهتمام المتزايد في التجارة الإلكترونية. تعتبر أسابير المشاعر الأساسيين لمراجعات المستخدمين ذات قيمة كبيرة لذكاء الأعمال. تحليل المعنويات الفئة في الأساس (ACSA) ومراجعة التنبؤ بالتصنيف (RP) هما مهامان أساسيان للكشف عن أسطاطات المشاعر الدقيقة إلى الخشنة. ترتبط ACSA و RP بشكل كبير وعادة ما تستخدم بشكل مشترك في سيناريوهات التجارة الإلكترونية في العالم الحقيقي. في حين يتم بناء معظم مجموعات البيانات العامة ل ACSA و RP بشكل منفصل، مما قد يحد من استغلالهما الإضافي لكلتا المهام. لمعالجة المشكلة والبحثات المتقدمة ذات الصلة، نقدم مراجعة مطعم صيني واسع النطاق في اسرع وقت ممكن في اسرع وقت ممكن في اسرع وقت ممكن 46، 730 مراجعات أصلية من نظام التجارة الإلكترونية الرائدة عبر الإنترنت (O2O) في الصين. إلى جانب تصنيف مقياس من 5 نجوم، يتم تفجيح كل مراجعة يدويا وفقا لأقطاب المعنويات نحو 18 فئة من الارتفاع المحدد مسبقا. نأمل أن يتم إلقاء الإفراج عن DataSet على إلقاء بعض الضوء على مجال تحليل المعنويات. علاوة على ذلك، نقترح نموذج مشترك بديهي ولكن فعال ل ACSA و RP. توضح النتائج التجريبية أن النموذج المشترك تفوق خطوط الأساس الحديثة في كلا المهام.

المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

اجتذبت تحليل المعنويات الفئة في الآراء اهتمام الأبحاث المتزايد.تستخدم الأساليب المهيمنة نماذج لغة مدربة مسبقا عن طريق تعلم تمثيلات فعالة من الفئة من الفئة، وإضافة طبقات إخراج محددة إلى تمثيلها المدرب مسبقا.نحن نعتبر طريقة أكثر مباشرة لاستخدام نماذج ا للغة المدربة مسبقا، من خلال إلقاء مهام ACSA في مهام توليد اللغة الطبيعية، باستخدام جمل اللغة الطبيعية لتمثيل الإخراج.تتيح لطريقتنا استخدام المزيد من الاستخدام المباشر للمعرفة المدربة مسبقا في طرازات اللغة SEQ2SEQ من خلال إعداد المهام مباشرة أثناء التدريب المسبق.تشير التجارب في العديد من المعايير إلى أن طريقتنا تمنح أفضل النتائج المبلغ عنها، حيث توجد مزايا كبيرة في إعدادات قليلة وإعدادات طلقة صفرية.
تحليل المعنويات الفئة في الأساس (ACSA)، والتي تهدف إلى تحديد أساور المشاعر المحبوبة من فئات الارتفاع المناقشات في مراجعات المستخدمين. ACSA صعبة ومكلفة عند إجراءها في تطبيقات عالمية حقيقية، والتي ترجع بشكل رئيسي إلى الأسباب التالية: 1.) وعلم بيانات AC SA الفاخرة غالبا ما تكون كثيفة العمالة. 2.) سيتم تحديث فئات الارتفاع بشكل ديناميكي وتعديلها بتطوير سيناريوهات التطبيق، مما يعني أن البيانات يجب أن تنعيم بشكل متكرر. 3.) نظرا لزيادة فئات الارتفاع، يجب إعادة تدريب النموذج بشكل متكرر للتكيف السريع مع بيانات فئة الجانب الإضافية حديثا. للتغلب على المشكلات المذكورة أعلاه، نقدم نهجا جديدا للتعلم من التعلم متعددة المهام (MMTL)، هذه المهام ACSA بمثابة مشكلة في التعلم التلوي (أي فيما يتعلق بمشاكل تصنيف قطباء القطبية في الفئة في الفئة مثل المهام التدريبية المختلفة لل meta - التعلم) لتعلم تهيئة مثالية وقابلة للتخصيرة نموذج التعلم متعدد المهام التي يمكن تكييفها مع مهام ACSA الجديدة بكفاءة وفعالية. تشير نتائج التجربة إلى أن النهج المقترح يتفوق بشكل كبير على النموذج الأساسي القائم على المحولات القائم على المحولات القوية مسبقا، خاصة، في حالة وجود بيانات تدريبية على غرامة أقل وصفها.
في هذه الورقة، يمكننا التحقيق في مهمة تحليل المشاعر الفئة من الفئة (ACSA) من منظور جديد من خلال استكشاف بناء الرسوم البيانية المدرجة في جوانب التجريبية على أساس المعرفة الخارجية. وهذا يعني أننا لم نعد النزود حول كيفية البحث بشغف على أدلة المشاعر للجو انب الخشنة من السياق، ولكن كيف تفضل أن تجد الكلمات ذات الصلة بشدة إلى الجوانب في السياق وتحديد أهميتها بناء على قاعدة المعرفة العامة وبعد وبهذه الطريقة، يمكن تتبع أدلة المعنويات السياقية بشكل صريح في ACSA للجوانب في ضوء هذه الكلمات المتعلقة بالجانب. لتكون محددة، نعتبر أولا كل جانب كحوري لاستخلاص الكلمات التي تدرك الجانب مرتبطة بشدة بالجانب من معرفة المناولة العاطفية الخارجية. بعد ذلك، نوظف توزيع بيتا لاستكشاف الوزن على دراية الجسدة، والذي يعكس أهمية الجانب، لكل كلمة على أساس جوانب. بعد ذلك، يتم تقديم الكلمات التي يدركها الجانب كضعف من جانب المحبوس الخشبي لإنشاء رسوم بيانية لاستفادة من تبعيات المعنويات السياقية ذات الصلة بالجانب في ACSA. تظهر التجارب في 6 مجموعات بيانات معيار أن نهجنا تتفوق بشكل كبير على أساليب خط الأساس الحديثة.
يهدف تحليل المعنويات إلى اكتشاف المشاعر الإجمالية، أي قطبية أو قطبية جملة أو فقرة أو نصية، دون النظر في الكيانات المذكورة وجوانبها. يهدف تحليل المعنويات القائم على الجانب إلى استخراج جوانب الكيانات المستهدفة المعينة مشاعرهم. يعمل بشكل مسبق على صياغة هذه المشكلة بمثابة مشكلة في العلامات أو حل هذه المهمة باستخدام إطار المستخلص المستخرج ثم يستند إلى الفحص حيث يتم استخراج كل أهداف الرأي الأولى من الجملة، ثم بمساعدة تمثيل تمثيل، يتم تصنيف الأهداف على أنها إيجابية، سلبية، أو محايدة. تعاني مشكلة وضع العلامات على التسلسل من مشكلات مثل عدم تناسق المعنويات ومساحة البحث الهائل. في حين أن إطار المستخلصات المستخلصات القائم على الفستان يعاني من قضايا مثل تغطية نصف كلمة وإيواء متداخلة. للتغلب على هذا، نقترح إطار عمل مستخلص مستخلص مقرا له على أساسه مع رواية ومثبتة محسنة. تجارب في مجموعات البيانات القياسية الثلاثة (Restaurant14، Laptop14، Restaurant15) تظهر نموذجنا يتفوق باستمرار على الحالة الحالية من بين الفن. علاوة على ذلك، نقدم أيضا مراجعات أفلام مختلفة للإشراف على مجموعة بيانات (Movie20) ومراجعات فيلم Pseudo-Latceed DataSet (Movieslarge) صراحة لهذه المهمة والإبلاغ عن النتائج على مجموعة بيانات Movie20 الجديدة أيضا.
لفتت تلخيص الحوار اهتماما كبيرا مؤخرا. خاصة في مجال خدمة العملاء، يمكن للوكلاء استخدام ملخصات الحوار للمساعدة في زيادة أعمالهم من خلال معرفة قضايا العملاء بسرعة وتقدم الخدمة. تتطلب هذه التطبيقات ملخصات لاحتواء منظور مكبر صوت واحد ولديك هيكل تدفق موضو ع واضح، في حين لا يتوفر في مجموعات البيانات الحالية. لذلك، في هذه الورقة، نقدم مجموعة بيانات صينية جديدة لتلخيص حوار خدمة العملاء (CSDS). يعمل CSDS على تحسين الملخصات الإفراطية في جوانب: (1) بالإضافة إلى الملخص العام للحوار بأكمله، كما يتم تقديم ملخصات الأدوار أيضا للحصول على وجهات نظر مكبرات صوت مختلفة. (2) تلخص جميع الملخصات لكل موضوع بشكل منفصل، وبالتالي تحتوي على هيكل مستوى الموضوع للحوار. نحدد المهام في CSDS كمولية الملخص الشامل والملخصات المختلفة الموجهة نحو الأدوار لحوار معين. بعد ذلك، نقارن العديد من طرق التلخيص على CSDS، وإظهار نتائج التجربة أن الطرق الحالية عرضة لتوليد ملخصات زائدة وغير متماسكة. علاوة على ذلك، يصبح الأداء أسوأ بكثير عند تحليل الأداء في ملخصات الأدوار وهياكل الموضوعات. نأمل أن تتمكن هذه الدراسة من مراجعة تلخيص الحوار الصيني وفائدة المزيد من الدراسات.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا