تتمثل النهج المهيمن في التحقيق في الشبكات العصبية للعقارات اللغوية في تدريب Perceptron متعدد الطبقات الضحلة (MLP) على رأس التمثيلات الداخلية للنموذج. يمكن لهذا النهج اكتشاف الخصائص المشفرة في النموذج، ولكن بتكلفة إضافة معلمات جديدة قد تتعلم المهمة مباشرة. نقترح بدلا من ذلك، حيث نقترح مسبارا شبه جذاب، حيث نجد شبكة فرعية حالية تؤدي المهمة اللغوية المصالحة. بالمقارنة مع MLP، تحقق مسبار الشبكة الفرعية كلتا الدقة العليا على النماذج المدربة مسبقا ودقة منخفضة على النماذج العشوائية، لذلك فهي أفضل في العثور على خصائص ذات أهمية وأسوأ من التعلم بمفردها. بعد ذلك، من خلال اختلاف تعقيد كل مسبار، نوضح أن التحقيق في الشبكة الفرعية التي يسيطر عليها البريتو - يحقق في تحقيق الدقة العليا التي تحقق أي ميزانية تعقيد التحقيق. أخيرا، نقوم بتحليل شبكات فرعية الناتجة الناتجة في مختلف المهام لتحديد مكان ترميز كل مهمة، ونتجد أن المهام ذات المستوى الأدنى يتم التقاطها في طبقات أقل، إعادة إنتاج نتائج مماثلة في العمل الماضي.
The dominant approach in probing neural networks for linguistic properties is to train a new shallow multi-layer perceptron (MLP) on top of the model's internal representations. This approach can detect properties encoded in the model, but at the cost of adding new parameters that may learn the task directly. We instead propose a subtractive pruning-based probe, where we find an existing subnetwork that performs the linguistic task of interest. Compared to an MLP, the subnetwork probe achieves both higher accuracy on pre-trained models and lower accuracy on random models, so it is both better at finding properties of interest and worse at learning on its own. Next, by varying the complexity of each probe, we show that subnetwork probing Pareto-dominates MLP probing in that it achieves higher accuracy given any budget of probe complexity. Finally, we analyze the resulting subnetworks across various tasks to locate where each task is encoded, and we find that lower-level tasks are captured in lower layers, reproducing similar findings in past work.
المراجع المستخدمة
https://aclanthology.org/
تضمين الجملة تشفير المعلومات المتعلقة باستخدام التعابير في جملة.تقارير هذه الورقة مجموعة من التجارب التي تجمع بين المنهجية التحقيق مع اخفاء المدخلات لتحليل مكان وجود هذه المعلومات الاصطلاحية هذه، وما شكله.تشير نتائجنا إلى أن المفتاح الاصطلاعي لمصدر ب
لقد أظهرت نماذج اللغة المدربة على كورسا كبيرة جدا مفيدة لمعالجة اللغة الطبيعية. كأداة أثرية ثابتة، أصبحوا موضوعا للدراسة المكثفة، حيث يحكم العديد من الباحثين "مدى الحصول عليها والذي يثبت بسهولة التجريد اللغوي ومعرفة الواقعية والعمومية وقدرات التفكير.
تحتوي الوثائق العلمية على درجة كبيرة من الاختلاف، سواء من حيث المحتوى (الدلالات) والهيكل (البراغماتية). تؤكد العمل المسبق في الوثيقة العلمية التفاهم على دلالات من خلال تلخيص المستندات ونمذجة موضوع Corpus ولكن تميل إلى حذف البراغماتية مثل تنظيم الوثائ
التقييم البشري لمهام التلخيص موثوقة ولكن يجلب قضايا التكاثر والتكاليف العالية. المقاييس التلقائية رخيصة وغير قابلة للتكرار ولكن في بعض الأحيان ترتبط بشكل سيء بحكمات بشرية. في هذا العمل، نقترح Nemiautomatic مرنة لمقاييس التقييم الموجز التلقائي، بعد طر
وقد لوحظت مفارقة خسارة التعقيد، التي توضح أن الأفراد الذين يعانون من الأمراض من مرض ديناميات سلوكية يمكن التنبؤ بها بشكل مدهش، وقد لوحظ في مجموعة متنوعة من النظم الفسيولوجية البشرية والحيوانية. يعرض ظهور العلاج المستند عبر الإنترنت حديثا فرصة جديدة ل