التقييم البشري لمهام التلخيص موثوقة ولكن يجلب قضايا التكاثر والتكاليف العالية. المقاييس التلقائية رخيصة وغير قابلة للتكرار ولكن في بعض الأحيان ترتبط بشكل سيء بحكمات بشرية. في هذا العمل، نقترح Nemiautomatic مرنة لمقاييس التقييم الموجز التلقائي، بعد طريقة التقييم البشري الهرم. يحتفظ Lite2Pyramid شبه التلقائي بوحدات المحتوى الموجزة ذات العلامة البشرية القابلة لإعادة الاستخدام (SCU) للإشارة (SCU)، لكنها تحل محل العمل اليدوي للحكم على وجود قاضم في ملخصات النظام مع نموذج استنتاج اللغة الطبيعية (NLI). تستبدل Lite3pyramid التلقائي بالكامل مزيد من البدائل SCUS مع الوحدات الثلاثية الدلالية المستخرجة تلقائيا (STUS) عبر نموذج العلامات الدلالية (SRL). أخيرا، نقترح مقاييس، Lite2.xpyramid، حيث نستخدم نموذجا بسيطا للتنبؤ بمدى محاكاة STUS محاكاة SCUS والاحتفاظ ب SCUs الأكثر صعوبة في محاكاة، والتي توفر عملية انتقال سلسة وتوازن بين الأتمتة والتقييم اليدوي وبعد مقارنة 15 مقاييس موجودة، نقوم بتقييم الارتباطات المترية البشرية على 3 مجموعات بيانات تقييم التلوث الحالية و Pyrxsum التي تم جمعها حديثا (مع أمثلة / أنظمة / أنظمة 100/10 XSUM). يظهر أن Lite2Pyramid لديها باستمرار أفضل الارتباطات على مستوى الملخص؛ يعمل Lite3pyramid بشكل أفضل من أو قابلة للمقارنة مع مقاييس أوتوماتيكية أخرى؛ يتداول Lite2.XPyramID قبالة قطرات الارتباط الصغيرة لخفض الجهد اليدوي الأكبر، والتي يمكن أن تقلل من تكاليف جمع البيانات المستقبلية.
Human evaluation for summarization tasks is reliable but brings in issues of reproducibility and high costs. Automatic metrics are cheap and reproducible but sometimes poorly correlated with human judgment. In this work, we propose flexible semiautomatic to automatic summary evaluation metrics, following the Pyramid human evaluation method. Semi-automatic Lite2Pyramid retains the reusable human-labeled Summary Content Units (SCUs) for reference(s) but replaces the manual work of judging SCUs' presence in system summaries with a natural language inference (NLI) model. Fully automatic Lite3Pyramid further substitutes SCUs with automatically extracted Semantic Triplet Units (STUs) via a semantic role labeling (SRL) model. Finally, we propose in-between metrics, Lite2.xPyramid, where we use a simple regressor to predict how well the STUs can simulate SCUs and retain SCUs that are more difficult to simulate, which provides a smooth transition and balance between automation and manual evaluation. Comparing to 15 existing metrics, we evaluate human-metric correlations on 3 existing meta-evaluation datasets and our newly collected PyrXSum (with 100/10 XSum examples/systems). It shows that Lite2Pyramid consistently has the best summary-level correlations; Lite3Pyramid works better than or comparable to other automatic metrics; Lite2.xPyramid trades off small correlation drops for larger manual effort reduction, which can reduce costs for future data collection.
المراجع المستخدمة
https://aclanthology.org/
تتطلب العديد من التطبيقات توليد ملخصات مصممة خصيصا لاحتياجات معلومات المستخدم، أي نواياها. الأساليب التي تعبر عن النية عبر استعلامات المستخدم الصريحة تسقط قصيرة عند التفسير الاستعلام هو شخصي. توجد عدة مجموعات من مجموعات البيانات للتخصيص مع النوايا ال
تضمين الجملة تشفير المعلومات المتعلقة باستخدام التعابير في جملة.تقارير هذه الورقة مجموعة من التجارب التي تجمع بين المنهجية التحقيق مع اخفاء المدخلات لتحليل مكان وجود هذه المعلومات الاصطلاحية هذه، وما شكله.تشير نتائجنا إلى أن المفتاح الاصطلاعي لمصدر ب
تحتوي الوثائق العلمية على درجة كبيرة من الاختلاف، سواء من حيث المحتوى (الدلالات) والهيكل (البراغماتية). تؤكد العمل المسبق في الوثيقة العلمية التفاهم على دلالات من خلال تلخيص المستندات ونمذجة موضوع Corpus ولكن تميل إلى حذف البراغماتية مثل تنظيم الوثائ
مجردة ملكية مرغوبة لمتري التقييم المرجعي تقيس جودة محتوى الملخص هو أنه ينبغي أن يقدر مقدار المعلومات التي لدى الملخص مشتركا مع مرجع. لا يتداخل النص التقليدي المقاييس المستندة إلى النص مثل Rouge لتحقيق ذلك لأنهم يقتصرون على مطابقة الرموز، إما متعمدة أ
تتمثل النهج المهيمن في التحقيق في الشبكات العصبية للعقارات اللغوية في تدريب Perceptron متعدد الطبقات الضحلة (MLP) على رأس التمثيلات الداخلية للنموذج. يمكن لهذا النهج اكتشاف الخصائص المشفرة في النموذج، ولكن بتكلفة إضافة معلمات جديدة قد تتعلم المهمة مب