ترغب بنشر مسار تعليمي؟ اضغط هنا

تأييد النمذجة لتلخيص مبادرة متعددة المستندات

Modeling Endorsement for Multi-Document Abstractive Summarization

540   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

هناك فرق حاسم بين تلخيص المستندات الفردية والمتعددة هو كيف يتجلى المحتوى البارز نفسه في المستند (المستندات). على الرغم من أن هذا المحتوى قد يظهر في بداية وثيقة واحدة، إلا أن المعلومات الأساسية تكرر بشكل متكرر في مجموعة من المستندات المتعلقة بموضوع معين، مما يؤدي إلى تأثير تأييد يزيد من حية معلومات المعلومات. في هذه الورقة، نقوم بالنماذج تأثير تأييد المستندات عبر المستندات واستخدامها في تلخيص مستندات متعددة. تقوم طريقتنا بإنشاء ملخص من كل مستند، والتي تعمل كموثوقية لتحديد المحتوى البارز من مستندات أخرى. يتم استخدام قطاعات نصية تم تأييدها بشدة لإثراء نموذج فك التشفير العصبي لتعزيزها في ملخص مبيعات. تتمتع هذه الطريقة بإمكانيات كبيرة للتعلم من أمثلة أقل لتحديد المحتوى البارزين، مما يخفف من الحاجة إلى إعادة تدريب مكلفة عند تعديل مجموعة المستندات بشكل حيوي. من خلال تجارب واسعة النطاق حول مجموعات بيانات تلخيص المستندات متعددة الوثائق القياسية، نوضح فعالية أسلوبنا المقترح على خطوط خطوط أساسية منشورة قوية. أخيرا، ألقينا الضوء على اتجاهات البحث في المستقبل ومناقشة تحديات أوسع من هذه المهمة باستخدام دراسة حالة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تعتمد نماذج التلخيص المبخرية للحديث عن الفن بشكل عام على بيانات مسامحة واسعة النطاق، مما أدنى من قدرة تعميمها على المجالات التي لا تتوفر فيها هذه البيانات. في هذه الورقة، نقدم دراسة لتكييف المجال لمهمة تلخيص الجماع عبر ست مجالات مستهدفة متنوعة في إعد اد الموارد المنخفضة. على وجه التحديد، نقوم بالتحقيق في المرحلة الثانية من التدريب المسبق على النماذج الإدارية على نطاق واسع تحت ثلاثة إعدادات مختلفة: 1) التدريب قبل التدريب مسبقا؛ 2) ما قبل التكيف مع المجال و 3) ما قبل التدرب في المهام. تشير التجارب إلى أن فعالية التدريب المسبق مرتبط مع التشابه بين بيانات ما قبل التدريب ومهمة المجال المستهدف. علاوة على ذلك، نجد أن التدريب المستمر المستمر يمكن أن يؤدي إلى النسيان الكارثي في ​​النموذج المدرب مسبقا، وسيلة التعلم ذات النسيان الأقل يمكن تخفيف هذه المشكلة. علاوة على ذلك، توضح النتائج أن الفجوة الضخمة لا تزال موجودة بين إعدادات الموارد المنخفضة والموارد عالية، والتي تبرز الحاجة إلى طرق تكيف مجال أكثر تقدما لمهمة تلخيص التلخيص.
تلخيص الجماعي، مهمة توليد ملخص موجز لمستندات المدخلات، يتطلب: (1) التفكير في المستند المصدر لتحديد القطع البارزة من المعلومات المنتشرة عبر المستند الطويل، و (2) تأليف نص متماسك بإعادة بناء هذه الحقائق البارزة في ملخص أقصر يعكس بإخلاص العلاقات المعقدة التي تربط هذه الحقائق. في هذه الورقة، نتكيف مع TP-Transformer (Schlag et al.، 2019)، وهي عبارة عن بنية تثري المحولات الأصلية (Vaswani et al.، 2017) مع تمثيل المنتج التركيبي الصريح للتوتر (TPR)، لمهمة التلخيص المبشور وبعد الميزة الرئيسية لطرازنا هي التحيز الهيكلي الذي نقدمه من خلال ترميز مجموعتين منفصلين لكل رمزي لتمثيل الهيكل النحوي (مع ناقلات الدور) والمحتوى الدلالي (مع ناقلات حشو) بشكل منفصل. ثم يربط النموذج ثم متجاهلة الدور والحشو إلى TPR كإخراج الطبقة. نقول أن التمثيلات الوسيطة المنظمة تمكن النموذج من السيطرة بشكل أفضل على المحتويات (الحقائق البارزة) والهياكل (بناء الجملة الذي يربط الحقائق) عند إنشاء الملخص. وإظهار تجريبيا، نظرا لأن لدينا TP-Transforment تفوقنا على المحول ومحول TP الأصلي بشكل كبير على العديد من مجموعات بيانات تلخيص الجماع على حد سواء التقييمات التلقائية والإنسانية. في العديد من المهام التحقيق النحوية واللالسة، نوضح المعلومات الهيكلية الناشئة في مجاهاجر الدور واكتساب الأداء من خلال خصوصية المعلومات من مواقف الدور وتحسين الترجمة الترجمة الترجمة النحوية في مخرجات طبقة TPR. (التعليمات البرمجية المتاحة في HTTPS: // github.com/jianggyctarheel/tpt-summ)
اكتسبت أنظمة تلخيص الجماع العصبي تقدما كبيرا في السنوات الأخيرة.ومع ذلك، غالبا ما تنتج تلخيص التلوث في كثير من الأحيان بيانات غير متناسقة أو حقائق كاذبة.كيفية توليد الملخصات التجريدية بشكل كبير تلقائيافي هذه الورقة، اقترحنا نهجا فعالا معزز بيانات تكب ير البيانات الفعالة لتشكيل مجموعة بيانات الاتساق الواقعية.بناء على مجموعة البيانات الاصطناعية، ندرب نموذجا للتقييم التي لا يمكن أن تجعل تمييز التناسق الواقعي الدقيق والقوي فحسب، بل قادرا أيضا على جعل الأخطاء الواقعية القابلة للتفسير تتبعها توزيع التدرج السابق على توزيع الرمز المميز.توضح إجراء التجارب والتحليل في ملخصات التلخيص المشروح العام ومجموعات بيانات الاتساق واقعية نهجنا فعال ومعقول.
كان الحمل الزائد المعلومات أحد التحديات المتعلقة بالمعلومات من الإنترنت. إنها ليست مسألة وصول المعلومات، بدلا من ذلك، تحول التركيز نحو جودة البيانات المستردة. لا سيما في مجال الأخبار، تقرير منافذ متعددة عن أحداث الأخبار نفسها ولكن قد يختلف في التفاصي ل. يعتبر هذا العمل أن منافذ أخبار مختلفة من المرجح أن تختلف في أساليب الكتابة واختيار الكلمات، وتقترح طريقة لاستخراج الجمل بناء على معلوماتها الرئيسية من خلال التركيز على المرادفات المشتركة في كل جملة. تحاول طريقتنا أيضا تقليل التكرار من خلال التجميع الهرمي وترتيب جمل مختارة على TransBert المقترحة. تشير النتائج إلى أن الإطار المقترح غير المعدل بنجاح يحسن التغطية والتماسك، وفي الوقت نفسه، يقلل من التكرار للحصول على ملخص تم إنشاؤه. علاوة على ذلك، نظرا لعملية الحصول على DataSet، نقترح أيضا طريقة تحسين البيانات لتخفيف مشاكل النصوص غير المرغوب فيها، والتي تنجم عن عملية تجريف تلقائي.
إن السماح للمستخدمين بالتفاعل مع الملخصات المتعددة المستندات هو اتجاه واعد نحو تحسين وتخصيص النتائج الموجزة. تم اقتراح أفكار مختلفة للتلخيص التفاعلي في العمل السابق، لكن هذه الحلول متباينة للغاية ولا تضاهى. في هذه الورقة، نقوم بتطوير إطار تقييم نهاية إلى نهائي للتلخيص التفاعلي، مع التركيز على التفاعل القائم على التوسع، الذي يعتبر تتراكم المعلومات على طول جلسة مستخدم. يتضمن إطار عملنا إجراءات لجمع دورات المستخدم الحقيقية، وكذلك تدابير التقييم التي تعتمد على معايير تلخيص، ولكنها تتكيف مع تعكس التفاعل. جميع حلولنا ومواردنا متوفرة علنا ​​كمعيار، مما يسمح بمقارنة التطورات المستقبلية في تلخيص تفاعلي، وتحفز تقدم في تقييمها المنهجي. نوضح استخدام إطار العمل لدينا من خلال تقييم ومقارنة تطبيقات خط الأساس التي طورنا لهذا الغرض، والتي ستكون بمثابة جزء من معيارنا. تحفيز تجاربنا الواسعة وتحليلنا تصميم إطار التقييم المقترح ودعم صلاحيته.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا