ترغب بنشر مسار تعليمي؟ اضغط هنا

الاضطرابات النحوية تكشف عن ترتبط التمثيلية بنية العبارة الهرمية في نماذج اللغة المحددة مسبقا

Syntactic Perturbations Reveal Representational Correlates of Hierarchical Phrase Structure in Pretrained Language Models

178   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في حين أن تمثيل اللغة المستندة إلى المتجهات من النماذج اللغوية المحددة قد حددت معيارا جديدا للعديد من مهام NLP، إلا أنه ليس هناك حساب كامل لأعمالهم الداخلية. على وجه الخصوص، ليس من الواضح تماما ما يتم التقاط جوانب بناء جملة مستوى الجملة من خلال هذه التمثيلات، ولا (إذا كان على الإطلاق) بنيت على طول الطبقات المكدسة من الشبكة. في هذه الورقة، نهدف إلى معالجة هذه الأسئلة مع فئة عامة من التحليلات المستندة إلى اضطرابات التدخل، والإدخال المستندة إلى الإدخال من النماذج اللغوية المحددة مسبقا. استيراد من علم الأعصاب الحسابي والمعرفي فكرة الثابتة التمثيلية، نقوم بإجراء سلسلة من المجسات المصممة لاختبار حساسية هذه التمثيلات لعدة أنواع الهيكل في الجمل. ينطوي كل مسبار على تبديل الكلمات في جملة ومقارنة التمثيلات من الجمل المضطربة ضد الأصل. نقوم بتجربة ثلاثة اضطرابات مختلفة: (1) تصامح عشوائية من نجمات N-Gram من عرض متفاوت، لاختبار النطاق الذي يمثل التمثيل حساسا لهذا المنصب؛ (2) تبديل اثنين من الأمور التي تفعل أو لا تشكل عبارة نصية، لاختبار الحساسية بنية العبارة العالمية؛ و (3) تبديل كلمات اثنين المجاورة التي تفعل أو لا تفكر عبارة نصية، لاختبار الحساسية بنية العبارة المحلية. تشير النتائج من هذه التحقيقات بشكل جماعي إلى أن المحولات تبني حساسية أجزاء أكبر من الجملة على طول طبقاتها، وأن هيكل العبارة الهرمية يلعب دورا في هذه العملية. على نطاق أوسع نطاقا، تشير نتائجنا أيضا إلى أن اضطرابات الإدخال المهيكلة تتسع نطاق التحليلات التي يمكن تنفيذها في أنظمة التعلم العميقة في كثير من الأحيان، ويمكن أن تكون بمثابة مكمل للأدوات الحالية (مثل التحقيقات الخطية الخاضعة للإشراف) لتفسير الصندوق الأسود المعقدة عارضات ازياء.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تركز العمل الحالي على التحقيق في نماذج اللغة المحددة مسبقا (LMS) في الغالب على المهام الأساسية على مستوى الجملة.في هذه الورقة، نقدم إجراء خطاب على مستوى المستندات لتقييم قدرة LMS المسبقة على التقاط العلاقات على مستوى المستندات.نقوم بتجربة 7 LMS محددة مسبقا، 4 لغات، و 7 مهام قيد الخطاب، والعثور على بارت ليكون بشكل عام أفضل نموذج في التقاط الخطاب - - ولكن فقط في تشفيرها، مع بيرت أداء بشكل مفاجئ نموذج الأساس.عبر النماذج المختلفة، هناك اختلافات كبيرة في أفضل طبقات في التقاط معلومات خطاب، والتفاوتات الكبيرة بين النماذج.
الاتساق الملخص للنموذج --- أي ثابت سلوكه بموجب استطلاعات المعنى المحفوظة في مدخلاته --- هو ممتلكات مرغوبة للغاية في معالجة اللغة الطبيعية.في هذه الورقة ندرس السؤال: نماذج اللغة المحددة مسبقا (PLMS) بما يتفق فيما يتعلق بالمعرفة الواقعية؟تحقيقا لهذه ال غاية، نقوم بإنشاء Pararel?، وهو مورد عالي الجودة لاستعلام النمط الإنجليزي على الطراز على الطراز.أنه يحتوي على ما مجموعه 328 صالة لمدة 38 علامة.باستخدام pararel?، نوضح أن اتساق جميع اللقطات المقبلات التي نقوم بتجربةها سيئة --- على الرغم من وجود تباين كبير بين العلاقات.يقترح تحليلنا للمساحات التمثيلية لمحلات PLMS أن لديهم بنية سيئة ولا تكون مناسبة حاليا لتمثيل المعرفة بقوة.أخيرا، نقترح طريقة لتحسين الاتساق النموذجي وتظهر تجريبيا فعاليته
للحصول على تضمين الجملة ذات الجودة العالية من نماذج اللغة المحددة مسبقا (PLMS)، يجب أن تكون تؤدي إما بزيادة أهداف محالمنة إضافية أو Finetuned على مجموعة كبيرة من أزواج النص المسمى.في حين أن النهج الأخير يتفوق عادة على السابق، إلا أنه يتطلب جهد إنساني كبير لتوليد مجموعات بيانات مناسبة من الحجم الكافي.في هذه الورقة، نظير على هذه الورقة، نظرا لأن PLMS يمكن أن يتم الاستفادة منها للحصول على مدينات جملة عالية الجودة دون الحاجة إلى البيانات المسمى أو التصميم أو التعديلات على الهدف المحدد: نحن نستخدم القدرات الاستهادة للمقطوعات الكبيرة والأداء عالية الأداء لتوليد مجموعات بيانات كاملةأزواج النص المسمى من نقطة الصفر، والتي نستخدمها بعد ذلك للحصول على نماذج أصغر بكثير وأكثر كفاءة.يتفوق نهجنا غير المعدل بالكامل بشكل كامل
استفاد من إعادة صياغة الصياغة على نطاق واسع من التقدم الأخير في تصميم الأهداف التدريبية والبنية النموذجية. ومع ذلك، تركز الاستكشافات السابقة إلى حد كبير على الأساليب الخاضعة للإشراف، والتي تتطلب كمية كبيرة من البيانات المسمى ذات مكلفة لجمعها. لمعالجة هذا العيب، نعتمد نهجا للتعلم ونقله واقتراح خط أنابيب التدريب الذي يتيح نماذج اللغة المدربة مسبقا لتوليد أول اتصالات عالية الجودة في إعداد غير محدد. تتكون وصفة لدينا من تكيف المهام والإشراف الذاتي وخوارزمية فك التشفير الجديدة المسماة حظر ديناميكي (DB). لفرض نموذج سطح متغاضي عن الإدخال، كلما أن نموذج اللغة ينبعث رمز رمزي موجود في تسلسل المصدر، يمنع DB النموذج من إخراج الرمز المميز اللاحق للمصدر خطوة الجيل التالي. نظرا للتقييمات التلقائية والإنسانية أن نهجنا يحقق أداء حديثة من كل من زوج السؤال Quora (QQP) ومجموعات بيانات Paranmt قوية لتحويل المجال بين مجموعة بيانات التوزيعات المميزة. نحن نوضح أيضا تحويلاتنا النموذجية إلى إعادة صياغة لغات أخرى دون أي رسوم إضافية.
التصنيفات هي تمثيل رمزي للعلاقات الهرمية بين المصطلحات أو الكيانات. في حين أن التصنيفات مفيدة في تطبيقات واسعة، فإن تحديثها أو الحفاظ عليها يدويا كثيفة العمالة وصعبة الحجم في الممارسة العملية. تفشل الأساليب الإشرافية التقليدية لهذه المهمة التخصيب هذه في العثور على والدي الأمثل للمصطلحات الجديدة في إعدادات الموارد المنخفضة حيث تتوفر تصنيفات صغيرة فقط بسبب التجاوز عن العلاقات الهرمية في التصنيفات. لمعالجة مشكلة تخصيب التصنيف المنخفض للموارد، نقترح Musubu، وهو إطار فعال لإثراء التصنيف في إعدادات الموارد المنخفضة مع نماذج اللغة المحددة مسبقا (LMS) كقواعد المعرفة للتعويض عن نقص المعلومات. يستفيد Musubu مصنف قائم على LM لتحديد ما إذا كان أزواج المصطلح المدبأ أو عدم وجود علاقات هرمية. يستخدم Musubu أيضا أنماطا هارا لتوليد استفسارات للاستفادة من المعرفة الضمنية من LM بكفاءة من أجل التنبؤ الأكثر دقة. إننا نوضح تجريبيا فعالية طريقتنا في تجارب واسعة النطاق بشأن التصنيفات من كل من مهمة Semeval ومجموعات بيانات التجزئة العالمية الحقيقية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا