ترغب بنشر مسار تعليمي؟ اضغط هنا

كيف يمكننا أن نعرف متى تعرف نماذج اللغة؟على معايرة نماذج اللغة للحصول على السؤال الرد

How Can We Know When Language Models Know? On the Calibration of Language Models for Question Answering

193   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

أظهرت الأعمال التجريدية الأخيرة أن نماذج اللغة (LM) تلتقط أنواعا مختلفة من المعرفة فيما يتعلق بالحقائق أو الحس السليم. ومع ذلك، نظرا لأن أي نموذج مثالي، إلا أنهم لا يزالون يفشلون في تقديم إجابات مناسبة في العديد من الحالات. في هذه الورقة، نطرح السؤال، كيف يمكننا أن نعرف متى تعرف نماذج اللغة، بثقة، الإجابة على استعلام معين؟ "نحن ندرس هذا السؤال من وجهة نظر المعايرة، وخاصية الاحتمالات المتوقعة للنموذج الاحتمالية في الواقع يجري ارتباطا جيدا مع احتمالات صحة. نحن ندرس ثلاث نماذج تولئة قوية --- T5، بارت، و GPT-2 --- ودراسة ما إذا كانت احتمالاتهم على مهام ضمان الجودة معا معايرة بشكل جيد، والعثور على الجواب لا أحد غير مؤكد نسبيا. ثم نقوم بعد ذلك بفحص الأساليب لمعايرة هذه النماذج لجعل ثقتهم عشرات ترتبط بتحسن مع احتمال صحة الصواب من خلال التعديل الدقيق أو التعديل أو تعديل المخرجات أو المدخلات المتوقعة. تجارب مجموعة متنوعة من مجموعات البيانات توضح فعالية أساليبنا. كما نقوم بإجراء تحليل لدراسة نقاط القوة والقيود المتمثلة في هذه الأساليب، وإلقاء الضوء على المزيد من التحسينات التي قد يتم إجراؤها في أساليب معايرة LMS. لقد أصدرنا التعليمات البرمجية في https://github.com/jzbjyb/lm-calibration.

المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تعرض مشكلة الإجابة على الأسئلة التي تستخدم المعرفة من طرازات اللغة المدربة مسبقا (LMS) ورسم الرسوم البيانية المعرفة (KGS) تحديين: بالنظر إلى سياق ضمان الجودة (اختيار الأسئلة والأجوبة)، فإن الأساليب تحتاج إلى (I) تحديد المعرفة ذات الصلة من KGS الكبيرة ،و (2) أداء التفكير المشترك في سياق ضمان الجودة و KG.هنا نقترح نموذجا جديدا، QA-GNN، الذي يتناول التحديات المذكورة أعلاه من خلال ابتكارات رئيسيتين: (ط) تسجيل الملاءمة، حيث نستخدم LMS لتقدير أهمية عقد KG بالنسبة إلى سياق ضمان الجودة المحدد، و (2) مشتركالتفكير، حيث نتواصل مع سياق ضمان الجودة و KG لتشكيل رسم بياني مشترك، وتحديث خصائصها المتبادلة من خلال رسالة الرسوم البيانية القائمة على الرسم البياني.نقوم بتقييم QA-GNN على مجموعات بيانات Commonsenseenseqa و OpenBookqa، وإظهار تحسنها على نماذج LM و LM + KG الحالية، وكذلك قدرتها على أداء التفكير القابل للتفسير والمنظم، على سبيل المثال، المناولة الصحيحة في الأسئلة.
إن التحدي الرئيسي في السؤال الرد على قواعد المعرفة (KBQA) هو التناقض بين أسئلة اللغة الطبيعية ومسارات المنطق في قاعدة المعرفة (KB). أساليب KBQA القائمة على الرسم البياني في الرسم البياني هي جيدة في استيعاب هيكل الطوبولوجي للرساه الرسم ولكن غالبا ما ت جاهل المعلومات النصية التي تحملها العقد والحواف. وفي الوقت نفسه، تتعلم نماذج اللغة المدربة مسبقا معرفة ضخمة مفتوحة عالمية من الكائنات الكبيرة، ولكنها في شكل اللغة الطبيعية وليس منظم. لسد الفجوة بين اللغة الطبيعية و KB الهيكلية، نقترح ثلاث مهام تعلم العلاقة ل KBQA القائم على BERT، بما في ذلك استخراج العلاقة ومطابقة العلاقات والمعاقين. عن طريق التدريب المعزز في العلاقة، يتعلم النموذج مواءمة تعبيرات اللغات الطبيعية للعلاقات في KB وكذلك السبب في الروابط المفقودة في KB. تظهر التجارب على WebQSP أن طريقتنا تتفوق باستمرار على خطوط الأساس الأخرى، خاصة عندما تكون KB غير مكتملة.
تعرض GPT-3 قدرة تعليمية ملحوظة في السياق من نماذج اللغة واسعة النطاق (LMS) المدربين على مئات البيانات بمليارات النطاق. نحن هنا تعالج بعض المشكلات المتبقية أقل إبلاغ عن ورق GPT-3، مثل LM غير الإنجليزية، وعروض النماذج المختلفة الحجم، وتأثير التحسين الف وري الذي قدم مؤخرا على التعلم في السياق. لتحقيق ذلك، نقدم Hyperclova، وهو متنقل كوري من 82B GPT-3 المدربين على كوربوس كوري مرئد من الرموز 560B. يعرض HyperClova المعزز من خلال رفيعنا الكوري الخاص بنا، ويعزز HyperClova مع تكوين التدريب لدينا أحدث أداء التعلم الصفرية في السياق وعدد قليل من الأداء في مهام المصب المختلفة في الكورية. أيضا، نعرض فوائد أداء التعلم الفوري وإظهار كيفية دمجه في خط أنابيب الهندسة السريعة. ثم نناقش إمكانية تحقيق نموذج لا يوجد رمز من خلال توفير قدرات النماذج الأولية ل AI لغير خبراء ML عن طريق إدخال ستوديو HyperClova، وهي واجهة هندسة سريعة التفاعلية. أخيرا، نوضح إمكانات أساليبنا بثلاث تطبيقات ناجحة في المنزل.
يتعين على نماذج اللغة المدربة مسبقا (PRLM) لإدارة وحدات الإدخال بعناية عند التدريب على نص كبير جدا مع مفردات تتكون من ملايين الكلمات. أظهرت الأعمال السابقة أن دمج معلومات المسيح على مستوى الأمان بشأن الكلمات المتتالية في التدريب المسبق يمكن أن تحسن أ داء PRLMS. ومع ذلك، بالنظر إلى أن أدلة المسكنات المستفادة مقدمة وإثباتها في التدريب المسبق، فإن الطرق السابقة تستغرق وقتا طويلا ونقص المرونة. لتخفيف الإزعاج، تقدم هذه الورقة طريقة رواية تمتد دقيقة لضبط PRLMS، مما يسهل إعداد SPES يتم تحديده على تكيفه بواسطة مهام معينة من المصب أثناء مرحلة الضبط الجميلة. بالتفصيل، سيتم تجزئة أي جمل تتم معالجتها من قبل PRLM في تمديدات متعددة وفقا لقاموس ما قبل العينات. ثم سيتم إرسال معلومات التجزئة من خلال وحدة CNN الهرمية مع مخرجات التمثيل من PRLM وتولد في نهاية المطاف تمثيلا محسن. تشير التجارب على معيار الغراء إلى أن طريقة ضبط الدقيقة المقترحة تعزز بشكل كبير PRLM، وفي الوقت نفسه، تقدم المزيد من المرونة بطريقة فعالة.
غالبا ما يتم تقييم نماذج اللغة المستخدمة في التعرف على الكلام بشكل جوهري باستخدام حيرة في بيانات الاختبار أو غير مسبوق مع نظام التعرف على الكلام التلقائي (ASR). لا يرتبط التقييم السابق دائما بشكل جيد مع أداء ASR، في حين أن الأخير يمكن أن يكون محددا ل أنظمة ASR معينة. اقترح العمل الحديث لتقييم نماذج اللغة باستخدامها لتصنيف جمل الحقيقة الأرضية بين جمل مماثلة للالعناد الصوتي الناتج عن محول الدولة الدقيقة. مثل هذا التقييم هو افتراض أن الجمل التي تم إنشاؤها غير صحيحة لغويا. في هذه الورقة، وضعنا أولا هذا الافتراض موضع السؤال، ومراقبة أن الجمل التي تم إنشاؤها بدلا من ذلك قد تكون صحيحة في كثير من الأحيان لغويا عندما تختلف عن الحقيقة الأرضية بواسطة تحرير واحد فقط. ثانيا، أظهرنا أنه باستخدام بيرت متعددة اللغات، يمكننا تحقيق أداء أفضل من العمل السابق على مجموعات بيانات تبديل التعليمات البرمجية. تطبيقنا متاح علنا ​​على Github في https://github.com/sikfeng/language-modelling-for-code-Switching.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا