ترغب بنشر مسار تعليمي؟ اضغط هنا

Quadrature entanglement and photon-number correlations accompanied by phase-locking

65   0   0.0 ( 0 )
 نشر من قبل Hayk Adamyan
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate quantum properties of phase-locked light beams generated in a nondegenerate optical parametric oscillator (NOPO) with an intracavity waveplate. This investigation continuous our previous analysis presented in Phys.Rev.A 69, 05814 (2004), and involves problems of continuous-variable quadrature entanglement in the spectral domain, photon-number correlations as well as the signatures of phase-locking in the Wigner function. We study the role of phase-localizing processes on the quantum correlation effects. The peculiarities of phase-locked NOPO in the self-pulsing instability operational regime are also cleared up. The results are obtained in both the P-representation as a quantum-mechanical calculation in the framework of stochastic equations of motion, and also by using numerical simulation based on the method of quantum state diffusion.

قيم البحث

اقرأ أيضاً

We report demonstrations of both quadrature squeezed vacuum and photon number difference squeezing generated in an integrated nanophotonic device. Squeezed light is generated via strongly driven spontaneous four-wave mixing below threshold in silicon nitride microring resonators. The generated light is characterized with both homodyne detection and direct measurements of photon statistics using photon number-resolving transition edge sensors. We measure $1.0(1)$~dB of broadband quadrature squeezing (${sim}4$~dB inferred on-chip) and $1.5(3)$~dB of photon number difference squeezing (${sim}7$~dB inferred on-chip). Nearly-single temporal mode operation is achieved, with measured raw unheralded second-order correlations $g^{(2)}$ as high as $1.95(1)$. Multi-photon events of over 10 photons are directly detected with rates exceeding any previous quantum optical demonstration using integrated nanophotonics. These results will have an enabling impact on scaling continuous variable quantum technology.
While two-photon absorption (TPA) and other forms of nonlinear interactions of molecules with isolated time-frequency-entangled photon pairs (EPP) have been predicted to display a variety of fascinating effects, their potential use in practical quant um-enhanced molecular spectroscopy requires close examination. This paper presents a detailed theoretical study of quantum-enhanced TPA by both photon-number correlations and spectral correlations, including an account of the deleterious effects of dispersion. While such correlations in EPP created by spontaneous parametric down conversion can increase the TPA rate significantly in the regime of extremely low optical flux, we find that for typical molecules in solution this regime corresponds to such low TPA event rates as to be unobservable in practice. Our results support the usefulness of EPP spectroscopy in atomic or other narrow-linewidth systems, while questioning the efficacy of such approaches for broadband systems including molecules in solution.
Variable measurement operators enable the optimization of strategies for testing quantum properties and the preparation of a range of quantum states. Here, we experimentally implement a weak-field homodyne detector that can continuously tune between measuring photon numbers and field quadratures. We combine a quantum signal with a coherent state on a balanced beam splitter and detect light at both output ports using photon-number-resolving transition edge sensors. We observe that the discrete difference statistics converge to the quadrature distribution of the signal as we increase the coherent state amplitude. Moreover, in a proof-of-principle demonstration of state engineering, we show the ability to control the photon-number distribution of a state that is heralded using our weak-field homodyne detector.
Entanglement and spontaneous emission are fundamental quantum phenomena that drive many applications of quantum physics. During the spontaneous emission of light from an excited two-level atom, the atom briefly becomes entangled with the photonic fie ld. Here, we show that this natural process can be used to produce photon-number entangled states of light distributed in time. By exciting a quantum dot -- an artificial two-level atom -- with two sequential pi pulses, we generate a photon-number Bell state. We characterise this state using time-resolved intensity and phase correlation measurements. Furthermore, we theoretically show that applying longer sequences of pulses to a two-level atom can produce a series of multi-temporal mode entangled states with properties intrinsically related to the Fibonacci sequence. Our work demonstrates that spontaneous emission is a powerful entanglement resource and it can be further exploited to generate new states of quantum light with potential applications in quantum technologies.
In order to implement fault-tolerant quantum computation, entanglement generation with low error probability and high success probability is required. We have proposed the use of squeezed coherent light as a probe to generate entanglement between two atoms by communication, and shown that the error probability is reduced well below the threshold of fault-tolerant quantum computation [Phys. Rev. A. {bf 88}, 022313 (2013)]. Here, we investigate the effect of photon loss mainly due to finite coupling efficiency to the cavity. The error probability with the photon loss is calculated by the beam-splitter model for homodyne measurement on probe light. Optimum condition on the amplitude of probe light to minimize the error probability is examined. It is shown that the phase-squeezed probe light yields lower error probability than coherent-light probe. A fault-tolerant quantum computation algorithm can be implemented under 0.59 dB loss by concatenating five-qubit error correction code.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا