ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon-number entanglement generated by sequential excitation of a two-level atom

81   0   0.0 ( 0 )
 نشر من قبل Stephen Wein
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entanglement and spontaneous emission are fundamental quantum phenomena that drive many applications of quantum physics. During the spontaneous emission of light from an excited two-level atom, the atom briefly becomes entangled with the photonic field. Here, we show that this natural process can be used to produce photon-number entangled states of light distributed in time. By exciting a quantum dot -- an artificial two-level atom -- with two sequential pi pulses, we generate a photon-number Bell state. We characterise this state using time-resolved intensity and phase correlation measurements. Furthermore, we theoretically show that applying longer sequences of pulses to a two-level atom can produce a series of multi-temporal mode entangled states with properties intrinsically related to the Fibonacci sequence. Our work demonstrates that spontaneous emission is a powerful entanglement resource and it can be further exploited to generate new states of quantum light with potential applications in quantum technologies.



قيم البحث

اقرأ أيضاً

State mapping between atoms and photons, and photon-photon interactions play an important role in scalable quantum information processing. We consider the interaction of a two-level atom with a quantized textit{propagating} pulse in free space and st udy the probability $P_e(t)$ of finding the atom in the excited state at any time $t$. This probability is expected to depend on (i) the quantum state of the pulse field and (ii) the overlap between the pulse and the dipole pattern of the atomic spontaneous emission. We show that the second effect is captured by a single parameter $Lambdain[0,8pi/3]$, obtained by weighting the dipole pattern with the numerical aperture. Then $P_e(t)$ can be obtained by solving time-dependent Heisenberg-Langevin equations. We provide detailed solutions for both single photon Fock state and coherent states and for various temporal shapes of the pulses.
73 - Chengsong Zhao 2020
The hybrid microwave optomechanical-magnetic system has recently emerged as a promising candidate for coherent information processing because of the ultrastrong microwave photon-magnon coupling and the longlife of the magnon and phonon. As a quantum information processing device, the realization of a single excitation holds special meaning for the hybrid system. In this paper, we introduce a single two-level atom into the optomechanical-magnetic system and show that an unconventional blockade due to destructive interference cannot offer a blockade of both the photon and magnon. Meanwhile, under the condition of single excitation resonance, the blockade of the photon, phonon, and magnon can be achieved simultaneously even in a weak optomechanical region, but the phonon blockade still requires the cryogenic temperature condition.
An experiment is performed where a single rubidium atom trapped within a high-finesse optical cavity emits two independently triggered entangled photons. The entanglement is mediated by the atom and is characterized both by a Bell inequality violatio n of S=2.5, as well as full quantum-state tomography, resulting in a fidelity exceeding F=90%. The combination of cavity-QED and trapped atom techniques makes our protocol inherently deterministic - an essential step for the generation of scalable entanglement between the nodes of a distributed quantum network.
We report a system where fixed interactions between non-computational levels make bright the otherwise forbidden two-photon 00 --> 11 transition. The system is formed by hand selection and assembly of two discrete component transmon-style superconduc ting qubits inside a rectangular microwave cavity. The application of a monochromatic drive tuned to this transition induces two-photon Rabi-like oscillations between the ground and doubly-excited states via the Bell basis. The system therefore allows all-microwave two-qubit universal control with the same techniques and hardware required for single qubit control. We report Ramsey-like and spin echo sequences with the generated Bell states, and measure a two-qubit gate fidelity of 90% (unconstrained) and 86% (maximum likelihood estimator).
We propose a method to entangle two distant vibrating microsize mirrors (i.e., mechanical oscillators) in a cavity optomechanical system. In this scheme, we discuss both the resonant and large-detuning conditions, and show that the entanglement of tw o mechanical oscillators can be achieved with the assistance of a two-level atom and cavity-radiation pressure. In the resonant case, the operation time is relatively short, which is desirable to minimize the effects of decoherence. While in the large-detuning case, the cavity is only virtually excited during the interaction. Therefore, the decay of the cavity is effectively suppressed, which makes the efficient decoherence time of the cavity to be greatly prolonged. Thus, we observe that this virtual-photon process of microscopic objects may induce the entanglement of macroscopic objects. Moreover, in both cases, the generation of entanglement is deterministic and no measurements on the atom and the cavity are required. These are experimentally important. Finally, the decoherence effect and the experimental feasibility of the proposal are briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا