ﻻ يوجد ملخص باللغة العربية
We report demonstrations of both quadrature squeezed vacuum and photon number difference squeezing generated in an integrated nanophotonic device. Squeezed light is generated via strongly driven spontaneous four-wave mixing below threshold in silicon nitride microring resonators. The generated light is characterized with both homodyne detection and direct measurements of photon statistics using photon number-resolving transition edge sensors. We measure $1.0(1)$~dB of broadband quadrature squeezing (${sim}4$~dB inferred on-chip) and $1.5(3)$~dB of photon number difference squeezing (${sim}7$~dB inferred on-chip). Nearly-single temporal mode operation is achieved, with measured raw unheralded second-order correlations $g^{(2)}$ as high as $1.95(1)$. Multi-photon events of over 10 photons are directly detected with rates exceeding any previous quantum optical demonstration using integrated nanophotonics. These results will have an enabling impact on scaling continuous variable quantum technology.
Photon-number correlation measurements are performed on bright squeezed vacuum states using a standard Bell-test setup, and quantum correlations are observed for conjugate polarization-frequency modes. We further test the entanglement witnesses for t
Squeezed light are optical beams with variance below the Shot Noise Level. They are a key resource for quantum technologies based on photons, they can be used to achieve better precision measurements, improve security in quantum key distribution chan
A superconducting qubit in the strong dispersive regime of a circuit quantum electrodynamics system is a powerful probe for microwave photons in a cavity mode. In this regime, a qubit spectrum is split into multiple peaks, with each peak correspondin
We investigate quantum properties of phase-locked light beams generated in a nondegenerate optical parametric oscillator (NOPO) with an intracavity waveplate. This investigation continuous our previous analysis presented in Phys.Rev.A 69, 05814 (2004
We report a 65MHz-bandwidth triangular-shaped optical parametric oscillator (OPO) for squeezed vacuum generation at 860nm. The triangle structure of our OPO enables the round-trip length to reach 45mm as a ring cavity, which provides a counter circul