ﻻ يوجد ملخص باللغة العربية
While two-photon absorption (TPA) and other forms of nonlinear interactions of molecules with isolated time-frequency-entangled photon pairs (EPP) have been predicted to display a variety of fascinating effects, their potential use in practical quantum-enhanced molecular spectroscopy requires close examination. This paper presents a detailed theoretical study of quantum-enhanced TPA by both photon-number correlations and spectral correlations, including an account of the deleterious effects of dispersion. While such correlations in EPP created by spontaneous parametric down conversion can increase the TPA rate significantly in the regime of extremely low optical flux, we find that for typical molecules in solution this regime corresponds to such low TPA event rates as to be unobservable in practice. Our results support the usefulness of EPP spectroscopy in atomic or other narrow-linewidth systems, while questioning the efficacy of such approaches for broadband systems including molecules in solution.
Entangled photon pairs have been promised to deliver a substantial quantum advantage for two-photon absorption spectroscopy. However, recent work has challenged the previously reported magnitude of quantum enhancement in two-photon absorption. Here,
Entangled two-photon absorption (ETPA) has recently become a topic of lively debate, mainly due to the apparent inconsistencies in the experimentally-reported ETPA cross sections of organic molecules. In this work, we provide a thorough experimental
Two-photon absorption (TPA) and other nonlinear interactions of molecules with time-frequency-entangled photon pairs (EPP) has been predicted to display a variety of fascinating effects. Therefore, their potential use in practical quantum-enhanced mo
A theory of correlations between N photons of given frequencies and detected at given time delays is presented. These correlation functions are usually too cumbersome to be computed explicitly. We show that they are obtained exactly through intensity
Photonic time-frequency entanglement is a promising resource for quantum information processing technologies. We investigate swapping of continuous-variable entanglement in the time-frequency degree of freedom using three-wave mixing in the low-gain