ترغب بنشر مسار تعليمي؟ اضغط هنا

Runup of nonlinear asymmetric waves on a plane beach

81   0   0.0 ( 0 )
 نشر من قبل Pelinovsky
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of the long wave runup on a beach is discussed in the framework of the rigorous solutions of the nonlinear shallow-water theory. The key and novel moment here is the analysis of the runup of a certain class of asymmetric waves, the face slope steepness of which exceeds the back slope steepness. Shown is that the runup height increases when the relative face slope steepness increases whereas the rundown weakly depends on the steepness. The results partially explain why the tsunami waves with the steep front (as it was for the 2004 tsunami in the Indian Ocean) penetrate deeper into inland compared with symmetric waves of the same height and length.



قيم البحث

اقرأ أيضاً

The runup of tsunami waves on the coasts of the barrow bays, channels and straits is studied in the framework of the nonlinear shallow water theory. Using the narrowness of the water channel, the one-dimensional equations are applied; they include th e variable cross-section of channel. It is shown that the analytical solutions can be obtained with use of the hodograph (Legendre) transformation similar to the wave runup on the plane beach. As a result, the linear wave equation is derived and all physical variables (water displacement, fluid velocity, coordinate and time) can be determined. The dynamics of the moving shoreline (boundary of the flooding zone) is investigated in details. It is shown that all analytical formulas for the moving shoreline can be obtained explicitly. Two examples of the incident wave shapes are analysed: sine wave and parabolic pulse. The last example demonstrates that even for approaching of the crest only, the flooding can appear very quickly; then water will recede relatively slowly, and then again quickly return to the initial state.
The double-periodic solutions of the focusing nonlinear Schrodinger equation have been previously obtained by the method of separation of variables. We construct these solutions by using an algebraic method with two eigenvalues. Furthermore, we chara cterize the Lax spectrum for the double-periodic solutions and analyze rogue waves arising on their background. Magnification of the rogue waves is studied numerically.
We formulate a new approach to solving the initial value problem of the shallow water-wave equations utilizing the famous Carrier-Greenspan transformation [G. Carrier and H. Greenspan, J. Fluid Mech. 01, 97 (1957)]. We use a Taylor series approximati on to deal with the difficulty associated with the initial conditions given on a curve in the transformed space. This extends earlier solutions to waves with near shore initial conditions, large initial velocities, and in more complex U-shaped bathymetries; and allows verification of tsunami wave inundation models in a more realistic 2-D setting.
We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Korteweg-de Vries equation with steplike initial data leading to a rarefaction wave. In addition to the leading asymptotic we also compute the next term in the asymptotic expansion of the rarefaction wave, which was not known before.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا