ﻻ يوجد ملخص باللغة العربية
We formulate a new approach to solving the initial value problem of the shallow water-wave equations utilizing the famous Carrier-Greenspan transformation [G. Carrier and H. Greenspan, J. Fluid Mech. 01, 97 (1957)]. We use a Taylor series approximation to deal with the difficulty associated with the initial conditions given on a curve in the transformed space. This extends earlier solutions to waves with near shore initial conditions, large initial velocities, and in more complex U-shaped bathymetries; and allows verification of tsunami wave inundation models in a more realistic 2-D setting.
Hammack & Segur (1978) conducted a series of surface water-wave experiments in which the evolution of long waves of depression was measured and studied. This present work compares time series from these experiments with predictions from numerical sim
A formulation of the shallow water equations adapted to general complex terrains is proposed. Its derivation starts from the observation that the typical approach of depth integrating the Navier-Stokes equations along the direction of gravity forces
We present an extensive numerical comparison of a family of balance models appropriate to the semi-geostrophic limit of the rotating shallow water equations, and derived by variational asymptotics in Oliver (2006) for small Rossby numbers ${mathrm{Ro
We present a broadband waveguide for water waves obtained through mere manipulation of seabed properties and without any need for sidewalls. Specifically, we show that a viscoelastic seabed results in a modified effective gravity term in the governin
The shallow water equations (SWE) are a widely used model for the propagation of surface waves on the oceans. We consider the problem of optimally determining the initial conditions for the one-dimensional SWE in an unbounded domain from a small set