ترغب بنشر مسار تعليمي؟ اضغط هنا

Rarefaction Waves for the Toda Equation via Nonlinear Steepest Descent

193   0   0.0 ( 0 )
 نشر من قبل Gerald Teschl
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Toda lattice with steplike initial data corresponding to a rarefaction wave.



قيم البحث

اقرأ أيضاً

We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Korteweg-de Vries equation with steplike initial data leading to a rarefaction wave. In addition to the leading asymptotic we also compute the next term in the asymptotic expansion of the rarefaction wave, which was not known before.
189 - Fudong Wang , Wen-Xiu Ma 2020
We study the asymptotic behavior of Riemann-Hilbert problems (RHP) arising in the AKNS hierarchy of integrable equations. Our analysis is based on the $dbar$-steepest descent method. We consider RHPs arising from the inverse scattering transform of t he AKNS hierarchy with $H^{1,1}(R)$ initial data. The analysis will be divided into three regions: fast decay region, oscillating region and self-similarity region (the Painleve region). The resulting formulas can be directly applied to study the long-time asymptotic of the solutions of integrable equations such as NLS, mKdV and their higher-order generalizations.
The double-periodic solutions of the focusing nonlinear Schrodinger equation have been previously obtained by the method of separation of variables. We construct these solutions by using an algebraic method with two eigenvalues. Furthermore, we chara cterize the Lax spectrum for the double-periodic solutions and analyze rogue waves arising on their background. Magnification of the rogue waves is studied numerically.
We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Toda lattice for decaying initial data in the soliton region. In addition, we point out how to reduce the problem in the remaining region to the known case without solitons.
146 - Iryna Egorova , Johanna Michor , 2014
We derive the long-time asymptotics for the Toda shock problem using the nonlinear steepest descent analysis for oscillatory Riemann--Hilbert factorization problems. We show that the half plane of space/time variables splits into five main regions: T he two regions far outside where the solution is close to free backgrounds. The middle region, where the solution can be asymptotically described by a two band solution, and two regions separating them, where the solution is asymptotically given by a slowly modulated two band solution. In particular, the form of this solution in the separating regions verifies a conjecture from Venakides, Deift, and Oba from 1991.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا