ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Observation of Electronic Coupling in GaAs Lateral Quantum Dot Molecules

89   0   0.0 ( 0 )
 نشر من قبل Armando Rastelli
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the fabrication and photoluminescence properties of laterally-coupled GaAs/AlGaAs quantum dots. The coupling in the quantum dot molecules is tuned by an external electric field. An intricate behavior, consisting of spectral line crossings and avoided crossings is observed for different molecules. Anticrossing patterns in the photoluminescence spectra provide direct evidence of the lateral coupling between two nearby quantum dots. A simple calculation suggests that the coupling is mediated by electron tunneling, through which the states of direct and indirect exciton are brought into resonance.



قيم البحث

اقرأ أيضاً

189 - C. Bardot , M. Schwab , M. Bayer 2005
The exciton lifetimes $T_1$ in arrays of InAs/GaAs vertically coupled quantum dot pairs have been measured by time-resolved photoluminescence. A considerable reduction of $T_1$ by up to a factor of $sim$ 2 has been observed as compared to a quantum d ots reference, reflecting the inter-dot coherence. Increase of the molecular coupling strength leads to a systematic decrease of $T_1$ with decreasing barrier width, as for wide barriers a fraction of structures shows reduced coupling while for narrow barriers all molecules appear to be well coupled. The coherent excitons in the molecules gain the oscillator strength of the excitons in the two separate quantum dots halving the exciton lifetime. This superradiance effect contributes to the previously observed increase of the homogeneous exciton linewidth, but is weaker than the reduction of $T_2$. This shows that as compared to the quantum dots reference pure dephasing becomes increasingly important for the molecules.
We report a new transport feature in a GaAs lateral double quantum dot that emerges only for magnetic field sweeps and shows hysteresis due to dynamic nuclear spin polarization (DNP). This DNP signal appears in the Coulomb blockade regime by virtue o f the finite inter-dot tunnel coupling and originates from the crossing between ground levels of the spin triplet and singlet extensively used for nuclear spin manipulations in pulsed gate experiments. The unexpectedly large signal intensity is suggestive of unbalanced DNP between the two dots, which opens up the possibility of controlling electron and nuclear spin states via DC transport.
309 - M. Yamagiwa , T. Mano , T. Kuroda 2006
We report the fabrication of self-assembled, strain-free GaAs/Al$_{0.27}$Ga$_{0.73}$As quantum dot pairs which are laterally aligned in the growth plane, utilizing the droplet epitaxy technique and the anisotropic surface potentials of the GaAs (100) surface for the migration of Ga adatoms. Photoluminescence spectra from a single quantum dot pair, consisting of a doublet, have been observed. Finite element energy level calculations of a model quantum dot pair are also presented.
178 - Y. Komijani , M. Csontos , T. Ihn 2008
A quantum dot fabricated by scanning probe oxidation lithography on a p-type, C-doped GaAs/AlGaAs heterostructure is investigated by low temperature electrical conductance measurements. Clear Coulomb blockade oscillations are observed and analyzed in terms of sequential tunneling through the single-particle levels of the dot at T_hole = 185 mK. The charging energies as large as 2 meV evaluated from Coulomb diamond measurements together with the well resolved single-hole excited state lines in the charge stability diagram indicate that the dot is operated with a small number of confined particles close to the ultimate single-hole regime.
Excitonic polaron is directly demonstrated for the first time in InAs/GaAs quantum dots with photoluminescence method. A new peak ($s$) below the ground state of exciton ($s$) comes out as the temperature varies from 4.2 K to 285 K, and a huge anticr ossing energy of 31 meV between $s$ and $s$ is observed at 225 K, which can only be explained by the formation of excitonic polaron. The results also provide a strong evidence for the invalidity of Huang-Rhys formulism in dealing with carrier-longitudinal optical phonon interaction in quantum dot. Instead, we propose a simple two-band model, and it fits the experimental data quite well. The reason for the finding of the anticrossing is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا