ﻻ يوجد ملخص باللغة العربية
We report a new transport feature in a GaAs lateral double quantum dot that emerges only for magnetic field sweeps and shows hysteresis due to dynamic nuclear spin polarization (DNP). This DNP signal appears in the Coulomb blockade regime by virtue of the finite inter-dot tunnel coupling and originates from the crossing between ground levels of the spin triplet and singlet extensively used for nuclear spin manipulations in pulsed gate experiments. The unexpectedly large signal intensity is suggestive of unbalanced DNP between the two dots, which opens up the possibility of controlling electron and nuclear spin states via DC transport.
Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots lead to nuclear spin polarization that is qualitatively different from the well known optical orientation phenomena. By carrying out a comprehensive set
We theoretically investigate the controlled dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. Three regimes of long-term dynamics are identified, including the build up of a large difference in the Ov
The central-spin problem, in which an electron spin interacts with a nuclear spin bath, is a widely studied model of quantum decoherence. Dynamic nuclear polarization (DNP) occurs in central spin systems when electronic angular momentum is transferre
We present experimental data and associated theory for correlations in a series of experiments involving repeated Landau-Zener sweeps through the crossing point of a singlet state and a spin aligned triplet state in a GaAs double quantum dot containi
We report on the dynamic nuclear polarization of a single charge-tunable self-assembled InAs/GaAs quantum dot in a longitudinal magnetic field of $sim$0.2T. The hyperfine interaction between the optically oriented electron and nuclei spins leads to t