ﻻ يوجد ملخص باللغة العربية
A quantum dot fabricated by scanning probe oxidation lithography on a p-type, C-doped GaAs/AlGaAs heterostructure is investigated by low temperature electrical conductance measurements. Clear Coulomb blockade oscillations are observed and analyzed in terms of sequential tunneling through the single-particle levels of the dot at T_hole = 185 mK. The charging energies as large as 2 meV evaluated from Coulomb diamond measurements together with the well resolved single-hole excited state lines in the charge stability diagram indicate that the dot is operated with a small number of confined particles close to the ultimate single-hole regime.
We demonstrate that excited states in single-layer graphene quantum dots can be detected via direct transport experiments. Coulomb diamond measurements show distinct features of sequential tunneling through an excited state. Moreover, the onset of in
We study a graphene double quantum dot in different coupling regimes. Despite the strong capacitive coupling between the dots, the tunnel coupling is below the experimental resolution. We observe additional structures inside the finite-bias triangles
Low-temperature electrical conductance spectroscopy measurements of quantum point contacts implemented in p-type GaAs/AlGaAs heterostructures are used to study the Zeeman splitting of 1D subbands for both in-plane and out-of-plane magnetic field orie
We have studied theoretically the type-II GaAsSb capped InAs quantum dots for two structures differing in the composition of the capping layer, being either (i) constant or (ii) with Sb accumulation above the apex of the dot. We have found that the h
The quantum point contact (QPC) back-action has been found to cause non-thermal-equilibrium excitations to the electron spin states in a quantum dot (QD). Here we use back-action as an excitation source to probe the spin excited states spectroscopy f