ﻻ يوجد ملخص باللغة العربية
We report the fabrication of self-assembled, strain-free GaAs/Al$_{0.27}$Ga$_{0.73}$As quantum dot pairs which are laterally aligned in the growth plane, utilizing the droplet epitaxy technique and the anisotropic surface potentials of the GaAs (100) surface for the migration of Ga adatoms. Photoluminescence spectra from a single quantum dot pair, consisting of a doublet, have been observed. Finite element energy level calculations of a model quantum dot pair are also presented.
In strained heteroepitaxy, two-dimensional (2D) layers can exhibit a critical thickness at which three-dimensional (3D) islands self-assemble, relieving misfit strain at the cost of an increased surface area. Here we show that such a morphological ph
Efficient coupling between solid state quantum emitters and plasmonic waveguides is important for the realization of integrated circuits for quantum information, communication and sensing. However, realization of plasmonic circuits is still scarce, p
We report the fabrication and photoluminescence properties of laterally-coupled GaAs/AlGaAs quantum dots. The coupling in the quantum dot molecules is tuned by an external electric field. An intricate behavior, consisting of spectral line crossings a
The spin polarization of electrons trapped in InAs self-assembled quantum dot ensembles is investigated. A statistical approach for the population of the spin levels allows one to infer the spin polarization from the measure values of the addition en
The local density of states of Mn-Mn pairs in GaAs is mapped with cross-sectional scanning tunneling microscopy and compared with theoretical calculations based on envelope-function and tight-binding models. These measurements and calculations show t