ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic properties of the layered superconductor Cu0.07TiSe2

70   0   0.0 ( 0 )
 نشر من قبل Emilia Morosan
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The anisotropic superconducting properties of single crystals of Cu0.07TiSe2 were studied by measurements of magnetization and electrical resistivity. TC is around 3.9 K, and the measured upper critical field (Hc2) values are ~1.25 T and 0.8 T, for applied field parallel and perpendicular to the TiSe2 planes, respectively. The anisotropy ratio gamma_anis = H^ab_c2 / H^c_c2 is close to 1.6 and nearly temperature independent. The lower critical field (Hc1) values are much smaller (~ 32 Oe for H||ab and 17 Oe for H||c); demagnetizing corrections for field perpendicular to the thin plate crystals are required for the determination of H^c_c1. The anisotropy of the critical fields is described well by the anisotropic Ginzburg-Landau (GL) theory, and the characteristic GL parameters are determined and discussed.


قيم البحث

اقرأ أيضاً

204 - S. G. Tan , L. J. Li , Y. Liu 2012
Polycrystalline sample of the new layered superconductor Bi4O4S3 is successfully synthesized by solid-state reaction method by using Bi, S and Bi2O3 powders with one step reaction. The superconducting transition temperature (Tconset=4.5 K), the zero resistance transition temperature (Tc0=4.07 K) and the diamagnetic transition temperature (4.02 K at H=10 Oe) were confirmed by electrical transport and magnetic measurements. Also, our results indicate a typical type II-superconductor behavior. In addition, a large thermoelectric effect was observed with a dimensionless thermoelectric figure of merit (ZT) of about 0.03 at 300K, indicating Bi4O4S3 can be a potential thermoelectric material.
96 - G. F. Chen , Z. Li , G. Li 2008
We have employed a new route to synthesize single phase F-doped LaOFeAs compound and confirmed the superconductivity above 20 K in this Fe-based system. We show that the new superconductor has a rather high upper critical field of about 54 T. A clear signature of superconducting gap opening below T$_c$ was observed in the far-infrared reflectance spectra, with 2$Delta/textit{k}T_capprox$3.5-4.2. Furthermore, we show that the new superconductor has electron-type conducting carrier with a rather low carrier density.
Superconductivity with exotic properties has often been discovered in materials with a layered (two-dimensional) crystal structure. The low dimensionality affects the electronic structure of materials, which could realize a high transition temperatur e (Tc) and/or unconventional pairing mechanisms. Here, we report the superconductivity in a layered tin arsenide NaSn2As2. The crystal structure consists of (Sn2As2)2- bilayers, which is bound by van-der-Waals forces, separated by Na+ ions. Measurements of electrical resistivity and specific heat confirm the bulk nature of superconductivity of NaSn2As2 with Tc of 1.3 K. Our results propose that the SnAs layers will be a basic structure providing another universality class of a layered superconducting family, and it provides a new platform for the physics and chemistry of low-dimensional superconductors with lone pair electrons.
The aim of this work is to investigate the temperature dependencies both in CuO2-plane and out-of plane resistivities in electron-doped Nd2-xCexCuO4 for x from 0.135 up to 0.15 in order to analyze the anisotropy of the electrical transport in the pro cess of the evolution from antiferromagnetic (AF) order in underdoped region to superconducting (SC) order in optimally doped region.
The effects of pressure on the superconducting properties of a Bi-based layered superconductor La2O2Bi3Ag0.6Sn0.4S6, which possesses a four-layer-type conducting layer, have been studied through the electrical resistance and magnetic susceptibility m easurements. The crystal structure under pressure was examined using synchrotron X-ray diffraction at SPring-8. In the low-pressure regime, bulk superconductivity with a transition temperature Tc of ~ 4.5 K was induced by pressure, which was achieved by in-plane chemical pressure effect owing to the compression of the tetragonal structure. In the high-pressure regime above 6.4 GPa, a structural symmetry lowering was observed, and superconducting transitions with a Tc ~ 8 K were observed. Our results suggest the possible commonality on the factor essential for Tc in Bi-based superconductors with two-layer-type and four-layer-type conducting layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا