ترغب بنشر مسار تعليمي؟ اضغط هنا

A synthesis of the phenomenology of the underdoped cuprates

339   0   0.0 ( 0 )
 نشر من قبل T. Senthil
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The underdoped cuprates have a number of interesting and unusual properties that often seem hard to reconcile with one another. In this paper we show how many of these diverse phenomena can be synthesized into a single coherent theoretical picture. Specifically we present a description where a pseudogap and gapless Fermi arcs exist in the normal state above the superconducting transition temperature ($T_c$), but give way to the observed quantum oscillations and other phenomena at low temperature when the superconductivity is suppressed by a magnetic field. We show the consistency between these phenomena and observations of enhanced Nernst and diamagnetic signals above $T_c$. We also develop a description of the vortex core inside the superconducting state and discuss its relation with the high field phenomena.

قيم البحث

اقرأ أيضاً

The microscopical analysis of the unconventional and puzzling physics of the underdoped cuprates, as carried out lately by means of the Composite Operator Method (COM) applied to the 2D Hubbard model, is reviewed and systematized. The 2D Hubbard mode l has been adopted as it has been considered the minimal model capable to describe the most peculiar features of cuprates held responsible for their anomalous behavior. COM is designed to endorse, since its foundations, the systematic emergence in any SCS of new elementary excitations described by composite operators obeying non-canonical algebras. In this case (underdoped cuprates - 2D Hubbard model), the residual interactions - beyond a 2-pole approximation - between the new elementary electronic excitations, dictated by the strong local Coulomb repulsion and well described by the two Hubbard composite operators, have been treated within the Non Crossing Approximation. Given this recipe and exploiting the few unknowns to enforce the Pauli principle content in the solution, it is possible to qualitatively describe some of the anomalous features of high-Tc cuprate superconductors such as large vs. small Fermi surface dichotomy, Fermi surface deconstruction (appearance of Fermi arcs), nodal vs. anti-nodal physics, pseudogap(s), kinks in the electronic dispersion. The resulting scenario envisages a smooth crossover between an ordinary weakly-interacting metal sustaining weak, short-range antiferromagnetic correlations in the overdoped regime to an unconventional poor metal characterized by very strong, long-but-finite-range antiferromagnetic correlations leading to momentum-selective non-Fermi liquid features as well as to the opening of a pseudogap and to the striking differences between the nodal and the anti-nodal dynamics in the underdoped regime.
The enigmatic cuprate superconductors have attracted resurgent interest with several recent reports and discussions of competing orders in the underdoped side. Motivated by this, here we address the natural question of fragility of the d-wave superco nducting state in underdoped cuprates. Using a combination of theoretical approaches we study t-J like models, and discover an - as yet unexplored - instability that is brought about by an internal (anti-symmetric mode) fluctuation of the d-wave state. This new theoretical result is in good agreement with recent STM and ARPES studies of cuprates. We also suggest experimental directions to uncover this physics.
81 - G. Alvarez , E. Dagotto 2008
The one-particle spectral function of a state formed by superconducting (SC) clusters is studied via Monte Carlo techniques. The clusters have similar SC amplitudes but randomly distributed phases. This state is stabilized by the competition with ant i-ferromagnetism, after quenched disorder is introduced. Fermi arcs between the critical temperature Tc and the cluster formation temperature scale T* are observed, similarly as in the pseudo-gap state of the cuprates. The arcs originate at metallic regions in between the neighboring clusters that present large SC phase differences.
457 - Vivek Mishra , M. R. Norman 2015
Charge order has emerged as a generic feature of doped cuprates, leading to important questions about its origin and its relation to superconductivity. Recent experiments on two classes of hole doped cuprates indicate a novel d-wave symmetry for the order. These were motivated by earlier spin fluctuation theoretical studies based on an expansion about hot spots in the Brillouin zone that indicated such order would be competitive with d-wave superconductivity. Here, we reexamine this problem by solving strong coupling equations in the full Brillouin zone. Our results find that bond-oriented order, as seen experimentally, is strongly suppressed, indicating that the charge order must have a different origin.
We report a detailed study of the temperature and magnetic-field dependence of the spin susceptibility for a single crystal of La(1.875)Ba(0.125)CuO(4). From a quantitative analysis, we find that the temperature-dependent anisotropy of the suscepti bility, observed in both the paramagnetic and stripe-ordered phases, directly indicates that localized Cu moments dominate the magnetic response. A field-induced spin-flop transition provides further corroboration for the role of local moments. Contrary to previous analyses of data from polycrystalline samples, we find that a commonly-assumed isotropic and temperature-independent contribution from free carriers, if present, must be quite small. Our conclusion is strengthened by extending the quantitative analysis to include crystals of La(2-x)Ba(x)CuO(4) with x=0.095 and 0.155. On the basis of our results, we present a revised interpretation of the temperature and doping dependence of the spin susceptibility in La(2-x)(Sr,Ba)(x)CuO(4).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا