ﻻ يوجد ملخص باللغة العربية
In the stripe-ordered state of a strongly-correlated two-dimensional electronic system, under a set of special circumstances, the superconducting condensate, like the magnetic order, can occur at a non-zero wave-vector corresponding to a spatial period double that of the charge order. In this case, the Josephson coupling between near neighbor planes, especially in a crystal with the special structure of La_{2-x}Ba_xCuO_4, vanishes identically. We propose that this is the underlying cause of the dynamical decoupling of the layers recently observed in transport measurements at x=1/8.
A notable aspect of high-temperature superconductivity in the copper oxides is the unconventional nature of the underlying paired-electron state. A direct manifestation of the unconventional state is a pairing energy - that is, the energy required to
Polarized and unpolarized neutron scattering was used to measure the wave vector- and frequency-dependent magnetic fluctuations in the normal state (from the superconducting transition temperature, T_c=35, up to 350 K) of single crystals of La_{1.86}
We report a detailed study of the temperature and magnetic-field dependence of the spin susceptibility for a single crystal of La(1.875)Ba(0.125)CuO(4). From a quantitative analysis, we find that the temperature-dependent anisotropy of the suscepti
Recently we have used spectroscopic mapping with the scanning tunneling microscope to probe modulations of the electronic density of states in single crystals of the high temperature superconductor Bi2Sr2CaCu2O8+d (Bi-2212) as a function of temperatu
Superconductivity and magnetic order strongly compete in many conventional superconductors, at least partly because both tend to gap the Fermi surface. In magnetically-ordered conventional superconductors, the competition between these cooperative ph