ترغب بنشر مسار تعليمي؟ اضغط هنا

An empirical test for cellular automaton models of traffic flow

209   0   0.0 ( 0 )
 نشر من قبل Ludger Santen
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on a detailed microscopic test scenario motivated by recent empirical studies of single-vehicle data, several cellular automaton models for traffic flow are compared. We find three levels of agreement with the empirical data: 1) models that do not reproduce even qualitatively the most important empirical observations, 2) models that are on a macroscopic level in reasonable agreement with the empirics, and 3) models that reproduce the empirical data on a microscopic level as well. Our results are not only relevant for applications, but also shed new light on the relevant interactions in traffic flow.



قيم البحث

اقرأ أيضاً

Although traffic simulations with cellular-automata models give meaningful results compared with empirical data, highway traffic requires a more detailed description of the elementary dynamics. Based on recent empirical results we present a modified Nagel-Schreckenberg cellular automaton model which incorporates both a slow-to-start and an anticipation rule, which takes into account especially brake lights. The focus in this article lies on the comparison with empirical single-vehicle data.
We present results on the modeling of on- and off-ramps in cellular automata for traffic flow, especially the Nagel-Schreckenberg model. We study two different types of on-ramps that cause qualitatively the same effects. In a certain density regime o ne observes plateau formation in the fundamental diagram. The plateau value depends on the input-rate of cars at the on-ramp. The on-ramp acts as a local perturbation that separates the system into two regimes: A regime of free flow and another one where only jammed states exist. This phase separation is the reason for the plateau formation and implies a behaviour analogous to that of stationary defects. This analogy allows to perform very fast simulations of complex traffic networks with a large number of on- and off-ramps because one can parametrise on-ramps in an exceedingly easy way.
114 - J.M. Nava-Sedeno 2018
Many diffusion processes in nature and society were found to be anomalous, in the sense of being fundamentally different from conventional Brownian motion. An important example is the migration of biological cells, which exhibits non-trivial temporal decay of velocity autocorrelation functions. This means that the corresponding dynamics is characterized by memory effects that slowly decay in time. Motivated by this we construct non-Markovian lattice-gas cellular automata models for moving agents with memory. For this purpose the reorientation probabilities are derived from velocity autocorrelation functions that are given a priori; in that respect our approach is `data-driven. Particular examples we consider are velocity correlations that decay exponentially or as power laws, where the latter functions generate anomalous diffusion. The computational efficiency of cellular automata combined with our analytical results paves the way to explore the relevance of memory and anomalous diffusion for the dynamics of interacting cell populations, like confluent cell monolayers and cell clustering.
We apply the transfer-matrix DMRG (TMRG) to a stochastic model, the Domany-Kinzel cellular automaton, which exhibits a non-equilibrium phase transition in the directed percolation universality class. Estimates for the stochastic time evolution, phase boundaries and critical exponents can be obtained with high precision. This is possible using only modest numerical effort since the thermodynamic limit can be taken analytically in our approach. We also point out further advantages of the TMRG over other numerical approaches, such as classical DMRG or Monte-Carlo simulations.
108 - M. Anghel , W. Klein (1 2000
We present theoretical arguments and simulation data indicating that the scaling of earthquake events in models of faults with long-range stress transfer is composed of at least three distinct regions. These regions correspond to three classes of ear thquakes with different underlying physical mechanisms. In addition to the events that exhibit scaling, there are larger ``breakout events that are not on the scaling plot. We discuss the interpretation of these events as fluctuations in the vicinity of a spinodal critical point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا