ﻻ يوجد ملخص باللغة العربية
Many diffusion processes in nature and society were found to be anomalous, in the sense of being fundamentally different from conventional Brownian motion. An important example is the migration of biological cells, which exhibits non-trivial temporal decay of velocity autocorrelation functions. This means that the corresponding dynamics is characterized by memory effects that slowly decay in time. Motivated by this we construct non-Markovian lattice-gas cellular automata models for moving agents with memory. For this purpose the reorientation probabilities are derived from velocity autocorrelation functions that are given a priori; in that respect our approach is `data-driven. Particular examples we consider are velocity correlations that decay exponentially or as power laws, where the latter functions generate anomalous diffusion. The computational efficiency of cellular automata combined with our analytical results paves the way to explore the relevance of memory and anomalous diffusion for the dynamics of interacting cell populations, like confluent cell monolayers and cell clustering.
Based on a detailed microscopic test scenario motivated by recent empirical studies of single-vehicle data, several cellular automaton models for traffic flow are compared. We find three levels of agreement with the empirical data: 1) models that do
We study the extremal properties of a stochastic process $x_t$ defined by a Langevin equation $dot{x}_t=sqrt{2 D_0 V(B_t)},xi_t$, where $xi_t$ is a Gaussian white noise with zero mean, $D_0$ is a constant scale factor, and $V(B_t)$ is a stochastic di
We apply the transfer-matrix DMRG (TMRG) to a stochastic model, the Domany-Kinzel cellular automaton, which exhibits a non-equilibrium phase transition in the directed percolation universality class. Estimates for the stochastic time evolution, phase
We investigate the effects of markovian resseting events on continuous time random walks where the waiting times and the jump lengths are random variables distributed according to power law probability density functions. We prove the existence of a n
We introduce a heterogeneous continuous time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environmen