ﻻ يوجد ملخص باللغة العربية
We present results on the modeling of on- and off-ramps in cellular automata for traffic flow, especially the Nagel-Schreckenberg model. We study two different types of on-ramps that cause qualitatively the same effects. In a certain density regime one observes plateau formation in the fundamental diagram. The plateau value depends on the input-rate of cars at the on-ramp. The on-ramp acts as a local perturbation that separates the system into two regimes: A regime of free flow and another one where only jammed states exist. This phase separation is the reason for the plateau formation and implies a behaviour analogous to that of stationary defects. This analogy allows to perform very fast simulations of complex traffic networks with a large number of on- and off-ramps because one can parametrise on-ramps in an exceedingly easy way.
Based on a detailed microscopic test scenario motivated by recent empirical studies of single-vehicle data, several cellular automaton models for traffic flow are compared. We find three levels of agreement with the empirical data: 1) models that do
We present a new cellular automata model of vehicular traffic in cities by combining ideas borrowed from the Biham-Middleton-Levine (BML) model of city traffic and the Nagel-Schreckenberg (NaSch) model of highway traffic. The model exhibits a dynamic
We present a non-local version of a scalar balance law modeling traffic flow with on-ramps and off-ramps. The source term is used to describe the traffic flow over the on-ramp and off-ramps. We approximate the problem using an upwind-type numerical s
We introduce a pair of time-reversible models defined on the discrete space-time lattice with 3 states per site, specifically, a vacancy and a particle of two flavours (species). The local update rules reproduce the rule 54 reversible cellular automa
Although traffic simulations with cellular-automata models give meaningful results compared with empirical data, highway traffic requires a more detailed description of the elementary dynamics. Based on recent empirical results we present a modified