ﻻ يوجد ملخص باللغة العربية
Although traffic simulations with cellular-automata models give meaningful results compared with empirical data, highway traffic requires a more detailed description of the elementary dynamics. Based on recent empirical results we present a modified Nagel-Schreckenberg cellular automaton model which incorporates both a slow-to-start and an anticipation rule, which takes into account especially brake lights. The focus in this article lies on the comparison with empirical single-vehicle data.
Based on a detailed microscopic test scenario motivated by recent empirical studies of single-vehicle data, several cellular automaton models for traffic flow are compared. We find three levels of agreement with the empirical data: 1) models that do
We present results on the modeling of on- and off-ramps in cellular automata for traffic flow, especially the Nagel-Schreckenberg model. We study two different types of on-ramps that cause qualitatively the same effects. In a certain density regime o
Emerging transportation technologies offer unprecedented opportunities to improve the efficiency of the transportation system from the perspectives of energy consumption, congestion, and emissions. One of these technologies is connected and autonomou
Tolls are collected on many highways as a means of traffic control and revenue generation. However, the presence of tollbooths on highway surely slows down traffic flow. Here, we investigate how the presence of tollbooths affect the average car speed
Boundary-induced phase transitions are one of the surprising phenomena appearing in nonequilibrium systems. These transitions have been found in driven systems, especially the asymmetric simple exclusion process. However, so far no direct observation