ﻻ يوجد ملخص باللغة العربية
Light reflection and absorption spectra by a semiconductor quantum well (QW) , which width is comparable to a light wave length of stimulating radiation, are calculated. A resonance with two close located exited levels is considered. These levels can arise due to splitting of an energy level of an electron-hole pair (EHP) due to magnetopolaron effect, if the QW is in a quantizing magnetic field directed perpendicularly to the QW plane. It is shown that unlike a case of narrow QWs light reflection and absorption depend on a QW width $d$. The theory is applicable at any ratio of radiative and non-radiative broadenings of electronic excitations.
Light reflection and absorption spectra by a semiconductor quantum well (QW), which width is comparable to a light wave length of stimulating radiation, are calculated. A resonance with two close located exited levels is considered. These levels can
Reflectance, transmittance and absorbance of a symmetric light pulse, the carrying frequency of which is close to the frequency of interband transitions in a quantum well, are calculated. Energy levels of the quantum well are assumed discrete, and tw
The cross section of light absorption by semiconductor quantum dots in the case of the resonance with excitons $Gamma_6 times Gamma_7$ in cubical crystals $T_d$ is calculated. It is shown that an interference of stimulating and induced electric and m
Tunnel spectroscopy is used to probe the electronic structure in GaAs quantum well of resonant tunnel junction over wide range of energies and magnetic fields normal to layers. Spin degenerated high Landau levels ($N=2div7$) are found to be drastical
We propose a lateral spin-blockade device that uses an InGaAs/InAlAs double quantum well (DQW), where the values of the Rashba spin-orbit parameter $alpha_{rm R}$ are opposite in sign but equal in magnitude between the constituent quantum wells (QW).